Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 259: 121837, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38810347

RESUMO

The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.

2.
ISME Commun ; 3(1): 115, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935916

RESUMO

Due to the wide use of antibiotics, intensive aquaculture farms have been recognized as a significant reservoir of antibiotic resistomes. Although the prevalence of colistin resistance genes and multidrug-resistant bacteria (MDRB) has been documented, empirical evidence for the transmission of colistin and multidrug resistance between bacterial communities in aquaculture farms through horizontal gene transfer (HGT) is lacking. Here, we report the prevalence and transmission risk of colistin and multidrug resistance in 27 aquaculture water samples from 9 aquaculture zones from over 5000 km of subtropical coastlines in southern China. The colistin resistance gene mcr-1, mobile genetic element (MGE) intl1 and 13 typical antibiotic resistance genes (ARGs) were prevalent in all the aquaculture water samples. Most types of antibiotic (especially colistin) resistance are transmissible in bacterial communities based on evidence from laboratory conjugation and transformation experiments. Diverse MDRB were detected in most of the aquaculture water samples, and a strain with high-level colistin resistance, named Ralstonia pickettii MCR, was isolated. The risk of horizontal transfer of the colistin resistance of R. pickettii MCR through conjugation and transformation was low, but the colistin resistance could be steadily transmitted to offspring through vertical transfer. The findings have important implications for the future regulation of antibiotic use in aquaculture farms globally to address the growing threat posed by antibiotic resistance to human health.

3.
J Environ Manage ; 342: 118196, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209646

RESUMO

The combined pollution of heavy metals and organic compounds usually occurs simultaneously and induces high toxicity. The technology of simultaneous removal of combined pollution is lacking and the removal mechanism is not clear. Sulfadiazine (SD), a widely used antibiotic, was used as a model contaminant. Urea modified sludge-based biochar (USBC) was prepared and used to catalyze H2O2 to remove the combined pollution of Cu2+ and sulfadiazine (SD) without causing secondary pollution. After 2 h, the removal rates of SD and Cu2+ were 100 and 64.8%, respectively. Cu2+ adsorbed on the surface of USBC accelerated the activation of H2O2 by the USBC catalyzed by CO bond to produce hydroxyl radical (•OH) and single oxygen (1O2) to degrade SD. Twenty-three intermediate products were detected, most of which were completely decomposed into CO2 and H2O. The toxicity was significantly reduced in the combined polluted system. This study highlights the potential of the low-cost technology based on sludge reuse and its inherent significance in reducing the toxic risk of combined pollution in the environment.


Assuntos
Cobre , Peróxido de Hidrogênio , Cobre/química , Peróxido de Hidrogênio/química , Sulfadiazina , Esgotos , Ureia , Carvão Vegetal/química , Oxigênio , Catálise , Estresse Oxidativo
4.
Water Res ; 233: 119781, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841167

RESUMO

In rural areas where low-temperature groundwater is used as a drinking water source, cost-effective sterilization techniques are needed to prevent groundwater consumers from the disease risks triggered by pathogenic microorganisms like Escherichia coli and fungal spores. In this study, micro/nano bubbles (MNBs) coupled with the tellurium (Te)-based catalysts were used to considerably enhance the solar disinfection (SODIS) efficiency while overcoming the intrinsic defects of SODIS, particularly in low-temperature. Sterilization tests showed that 6.5 log10 cfu/mL of E. coli K-12 and 4.0 log10 cfu/mL of Aspergillus niger spores were completely inactivated within 5 min while applying this novel process for disinfection of raw groundwater, even in low-temperature. The underlying mechanisms of the extraordinary sterilization efficiency were revealed through comprehensive characterization of the catalysts and the physiological changes of the microorganisms. The localized surface plasmon resonance (LSPR) effect of the Te catalysts was identified to take advantage of photothermal synergism to achieve cell death. The integration of MNBs with the facet-engineered Te catalysts improved the photothermal catalytic effect and extracellular electron transfer, which substantially strengthened disinfection efficiency. This study provides a targeted solution into microbial inactivation in groundwater and emphasizes a cost-effective groundwater sterilization process.


Assuntos
Água Subterrânea , Purificação da Água , Telúrio , Escherichia coli , Água Subterrânea/microbiologia , Desinfecção/métodos , Purificação da Água/métodos
5.
Environ Int ; 168: 107460, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981477

RESUMO

Unveiling the mechanisms of bacterial sporulation at natural mineral interfaces is crucial to fully understand the interactions of mineral with microorganism in aquatic environment. In this study, the bacterial sporulation mechanisms of Bacillus subtilis (B. subtilis) at natural sphalerite (NS) interface with and without light irradiation were systematically investigated for the first time. Under dark condition, NS was found to inactivate vegetative cells of B. subtilis and promote their sporulation simultaneously. The released Zn2+ from NS was mainly responsible for the bacterial inactivation and sporulation. With light irradiation, the photocatalytic effect from NS could increase the bacterial inactivation efficiency, while the bacterial sporulation efficiency was decreased from 8.1 % to 4.5 %. The photo-generated H2O2 and O2- played the major roles in enhancing bacterial inactivation and suppressing bacterial sporulation process. The intracellular synthesis of dipicolinic acid (DPA) as biomarker for sporulation was promoted by NS in dark, which was suppressed by the photocatalytic effect of NS with light irradiation. The transformation process from vegetative cells to spores was monitored by both 3D-fluerecence EEM and SEM observations. Compared with the NS alone system, the NS/light combined system induced higher level of intracellular ROSs, up-regulated antioxidant enzyme activity and decreased cell metabolism activity, which eventually led to enhanced inactivation of vegetative cells and suppressed bacterial sporulation. These results not only provide in-depth understanding about bacterial sporulation as a new mode of sub-lethal stress response at NS interface, but also shed lights on putting forward suitable strategies for controlling spore-producing bacteria by suppressing their sporulation during water disinfection.

6.
J Hazard Mater ; 440: 129808, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029733

RESUMO

Solar-induced sterilization via photothermal synergy has attracted enormous attention due to its zero-energy consumption and the elimination of hazardous chemical disinfectant. Herein, we successfully synthesized a super biosafety Bi2O2Se with crossed nanosheet structure (Bi2O2Se-CN) for the sterilization of Escherichia coli (E. coli) via solar-induced photothermal synergistic effect. In comparison to bulk Bi2O2Se, the lower light reflection and more efficient photogenerated charge carrier separation under visible-infrared light irradiation resulted in the excellent sterilization effect of Bi2O2Se-CN, with a sterilization efficiency of 99.9% under the synergistic effect of light and heat. The crossed ultrathin nanosheet structure and suitable band gap width of Bi2O2Se-CN are fundamental reasons for its enhanced light absorption and charge carrier separation efficiency. Mechanistic studies showed that Bi2O2Se-CN can completely inactivate bacteria via generating a large amount of reactive oxygen species (•O2-, •OH, and 1O2) to attack the cell membrane, which further resulted in the reduced activity of intracellular enzymes and the leakage of intracellular contents. The biosafety property of Bi2O2Se-CN was confirmed by in vivo toxicological evaluation on the mice model. This work provided new ideas for the design of more efficient, energy-saving, biocompatible and environmental friendly solar water purification projects.


Assuntos
Desinfetantes , Desinfecção , Animais , Contenção de Riscos Biológicos , Desinfecção/métodos , Escherichia coli/efeitos da radiação , Substâncias Perigosas , Camundongos , Espécies Reativas de Oxigênio , Água
7.
J Hazard Mater ; 437: 129373, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728326

RESUMO

The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.


Assuntos
Nanoestruturas , Purificação da Água , Desinfecção , Humanos , Luz Solar , Água
8.
Water Res ; 218: 118407, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453030

RESUMO

The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.


Assuntos
Escherichia coli , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Ácido Fólico/farmacologia , Humanos , RNA/farmacologia , Águas Residuárias/microbiologia
9.
J Hazard Mater ; 431: 128510, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219058

RESUMO

This study, for the first time, developed a novel defective BiO2-x based collaborating system, where the near-infrared light (NIR) irradiation (λ > 700 nm) initiated persulfate activation and photocatalytic bacterial inactivation simultaneously. Vacancy-rich BiO2-x nanoplates possessed impressive NIR absorption and firstly realized persulfate activation under NIR irradiation. In this collaborating system, on one hand, the persulfate can be transformed into sulfate radicals through light/heat activation mode directly, which would be enhanced by the presence of vacancy-rich BiO2-x owing to its outstanding light and heat absorption ability. On the other hand, the photogenerated electrons can further efficiently react with persulfate and form sufficient reactive sulfate radicals. The sulfate radicals, synergizing with other reactive species (O2-, h+, etc.), achieved a 7-log Escherichia coli inactivation within 40 min. The systematic investigation of inactivation mechanism revealed that the reactive species caused the dysfunction of cellular respiration, ATP synthesis and bacterial membrane, followed by the severely oxidative damage to the antioxidative SOD and CAT enzymes and the generation of carbonylated protein. The final leakage of DNA and RNA implied the lethal damage to the bacteria cells. This work provided a new insight into the persulfate associated NIR driven remediation technology of controlling microbial contaminants.


Assuntos
Escherichia coli , Raios Infravermelhos , Bactérias , Sulfatos
10.
ACS Appl Mater Interfaces ; 14(6): 7878-7887, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104100

RESUMO

Hydrogen peroxide, an environmentally benign oxidant, is an effective chemical agent for water purification. On-site production of H2O2 is considered economical because it avoids the cost of storage and transportation. Traditional generation of H2O2 from oxygen reduction, as a heterogeneous electrochemical reaction, suffers from mass transfer problems because of the limited solubility and low diffusion rate of oxygen in water. These limitations can be overcome if H2O2 is formed by water oxidation. Herein, conversion of water to hydrogen peroxide was achieved efficiently on a CuWO4 anode. This water oxidation strategy can generate H2O2 at a rate of ∼11.8 µmol min-1 cm-2 at 3.0 V versus reversible hydrogen electrode. Importantly, this on-site H2O2 production shows high efficiency in water purification in O2-deficient conditions. This water oxidation anode offers a feasible way to provide a green purification agent with only water as the final byproduct, avoiding toxic intermediates and residues during the production and application.

11.
ACS Nano ; 16(3): 4152-4161, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35170317

RESUMO

Single-atom catalysts have received widespread attention for their fascinating performance in terms of metal atom efficiency as well as their special catalysis mechanisms compared to conventional catalysts. Here, we prepared a high-performance catalyst of single-Cu-atom-decorated boron nitride nanofibers (BNNF-Cu) via a facile calcination method. The as-prepared catalyst shows high catalytic activity and good stability for converting different nitro compounds into their corresponding amines both with and without photoexcitation. By combined studies of synchrotron radiation analysis, high-resolution high-angle annular dark-field transmission electron microscopy studies, and DFT calculations, dispersion and coordination of Cu atoms as well as their catalytic mechanisms are explored. The BNNF-Cu catalyst is found to have a record high turnover frequency compared to previously reported non-precious-metal-based catalysts. While the performance of the BNNF-Cu catalyst is only of the middle range level among the state-of-the-art precious-metal-based catalysts, due to the much lower cost of the BNNF-Cu catalyst, its cost efficiency is the highest among these catalysts. This work provides a choice of support material that can promote the development of single-atom catalysts.

12.
J Hazard Mater ; 419: 126446, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34182422

RESUMO

Sewage sludge-derived biochar (SBC) could remove organic contaminants in environment and reuse the sludge effectively. In this study, urea-doped SBC (NSBC) was prepared, characterized, and applied as heterogeneous catalytics to peroxydisulfate (PDS) activation. Sulfadiazine (SD), a widely used antibiotic, was used as a model pollutant to evaluate the efficiency and mechanism of this system. The degradation rate of SD increased to 100% after 4 h when 1 g/L of NSBC was added to the system with a SD concentration of 20 mg/L. In this study, it was confirmed that there were two important pathways in the degradation of SD by NSBC/PDS system: the free radical on the surface of NSBC and the nonradical (1O2) in the solution. The doping of N atoms makes neighboring C atoms positively charged, thereby making the direct transfer of electrons with S2O82- and the generation of 1O2 via nonradical pathway easy. In addition, the CO functional group formed during the pyrolysis of NSBC can produce 1O2 in a similar way. A total of 22 SD degradation products were identified, and 4 possible pathways were proposed. This study provide supplement for the degradation mechanism of organic compounds by carbon-based materials.


Assuntos
Esgotos , Sulfadiazina , Catálise , Carvão Vegetal
13.
Front Microbiol ; 12: 654033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967990

RESUMO

Klebsiella pneumoniae with crude glycerol-utilizing and hydrogen (H2)-producing abilities was successfully isolated from return activated sludge from Shatin Sewage Treatment Works. The H2 production strategy used in this study was optimized with crude glycerol concentrations, and 1,020 µmol of H2 was generated in 3 h. An organic-microbe hybrid system was constructed with metal-free hydrothermal carbonation carbon (HTCC) microspheres to enhance the H2 production under visible light (VL) irradiation. Under optimized VL intensity and HTCC concentration, an elevation of 35.3% in H2 production can be obtained. Electron scavenger study revealed that the photogenerated electrons (e-) from HTCC contributed to the additional H2 production. The variation in intercellular intermediates, enzymatic activity, and reducing equivalents also suggested that the photogenerated e- interacted with K. pneumoniae cells to direct the metabolic flux toward H2 production. This study demonstrated the feasibility of using an organic-microbe hybrid system as a waste-to-energy technology.

14.
Environ Res ; 198: 111295, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971128

RESUMO

Harmful algal blooms (HABs) caused by Karenia mikimotoi have frequently happened in coastal waters worldwide, causing serious damages to marine ecosystems and economic losses. Photocatalysis has potential to in-situ inhibit algal growth using sustainable sunlight. However, the inactivation and detoxification mechanisms of microalgae in marine environment have not been systematically investigated. In this work, for the first time, visible-light-driven photocatalytic inactivation of K. mikimotoi was attempted using g-C3N4/TiO2 immobilized films as a model photocatalyst. The inactivation efficiency could reach 64% within 60 min, evaluated by real-time in vivo chlorophyll-a fluorometric method. The immobilized photocatalyst films also exhibited excellent photo-stability and recyclability. Mechanisms study indicated photo-generated h+ and 1O2 were the dominant reactive species. Algal cell rupture process was monitored by fluorescent microscope combined with SEM observation, which confirmed the damage of cell membrane followed by the leakage of the intracellular components including the entire cell nucleus. The physiological responses regarding up-regulation of antioxidant enzyme activity (i.e. CAT and SOD), intracellular ROSs level and lipid peroxidation were all observed. Moreover, the intracellular release profile and acute toxicity assessment indicated the toxic K. mikimotoi was successfully detoxified, and the released organic matter had no cytotoxicity. This work not only provides a potential new strategy for in-situ treatment of K. mikimotoi using sunlight at sea environments, but also creates avenue for understanding the inactivation and destruction mechanisms of marine microalgae treated by photocatalysis and the toxicity impacts on the marine environments.


Assuntos
Dinoflagellida , Microalgas , Ecossistema , Proliferação Nociva de Algas , Luz
15.
Chemosphere ; 274: 129929, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979932

RESUMO

This research investigated the biodegradation kinetics, pathways and ecological risk of hexabromocyclododecane (HBCD) by a novel bacterium Citrobacter sp. Y3. Results showed the biodegradation followed a first-order model. The specific degradation rate constant of HBCD were obviously higher in batch experiments with combined carbon sources (k: 0.156-0.290 d-1) than those using HBCD as the sole carbon source (k: 0.055 d-1). Correspondingly, the degradation half-life became much shorter (T1/2: 2.39-4.44 d vs T1/2: 13.7 d). HBCD could be degraded through dehydrobromination and dehalohydroxylation, of which six possible degradation products were detected. To evaluate the ecological risk of HBCD biodegradation products, acute toxicity tests were assessed for the first time. The acute toxicity decreased slowly during treatment for 3-5 d and then decreased sharply. In general, treatment by Strain Y3 is not only a biodegradation process but also a detoxification process, thus it shows potential for bioremediation of HBCD contaminated sites.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Biodegradação Ambiental , Citrobacter , Hidrocarbonetos Bromados/toxicidade , Cinética
16.
Water Res ; 198: 117149, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930792

RESUMO

Currently existing Fenton-like catalysts were limited in wastewater treatment owing to their potential transition-metal poisoning, narrow applicable pH range and high dependence on external energy excitation. In this work, the MgNCN/MgO nanocomposites were firstly synthesized by a facile one-pot calcination of melamine and basic magnesium carbonate, and used as novel H2O2 activator for antibiotic removal. It was found that the MgNCN/MgO composite calcined at 550°C with the mass ratio of melamine to basic magnesium carbonate at 2:1, exhibited an excellent catalytic ability to tetracycline (TC) degradation in a wide pH range of 4-10 without any external energy input. More than 90% of TC (100 mL, 50 mg/L) could be degraded within 30 min by 10 mg of the nanocomposite in the presence of 0.2 mL of 30 wt% H2O2. Based on the experimental results, it was concluded that the Mg-N coordination between MgNCN and MgO in MgNCN/MgO nanocomposites activated H2O2 to produce primary singlet oxygen (1O2) and minor hydroxyl radicals (·OH), responding for TC degradation. In addition, the degradation pathways of TC were deduced by determining the generated intermediates during the degradation process. This work provided a novel idea for designing transition-metal-free catalysts for nonradical activation of H2O2 in the absence of external energy excitation.


Assuntos
Peróxido de Hidrogênio , Nanocompostos , Antibacterianos , Concentração de Íons de Hidrogênio , Óxido de Magnésio , Tetraciclina
17.
Environ Res ; 195: 110842, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571508

RESUMO

Two different morphologies of Fe2O3 involving nanodots and nanosheets were deposited on g-C3N4 nanosheets by simple in-situ deposition and impregnation-hydrothermal methods, respectively. Structural effect of Fe2O3 on photo-Fenton-like activity and charge transfer at the interface in these two g-C3N4/Fe2O3 hybrids were studied. Detail characterizations on charge transfer kinetics revealed that g-C3N4/nanodot-Fe2O3 structure showed faster electron injection rate and higher injection efficiency (≈0.084 ns-1 and ≈27.5%) than g-C3N4/nanosheet-Fe2O3 counterpart (≈0.054 ns-1 and ≈19.5%). Stronger intimate junction between g-C3N4 nanosheets and Fe2O3 nanodots was believed to be the reason for faster and more efficient electron injection. In addition, stronger interaction with tetracycline and higher reactivity with H2O2 at the interface were observed for g-C3N4/nanodot-Fe2O3 compared with g-C3N4/nanosheet-Fe2O3. Thereby, under visible light stimulation, g-C3N4/nanodot-Fe2O3 demonstrated higher photo-Fenton-like tetracycline removal efficiency and rate (≈87% and ≈0.037 min-1) than g-C3N4/nanosheet-Fe2O3 (≈57% and ≈0.016 min-1). Furthermore, g-C3N4/nanodot-Fe2O3 junction can remain robust catalytic performance under various conditions (recycle experiment, real environment, different initial pHs and temperatures, anion coexistence, and other contaminants removal) and possible tetracycline degradation pathways were proposed. This study provided deep insights into structure-activity relationship and electron transfer between g-C3N4 and nanostructured Fe2O3, which can open a new avenge to develop Fe2O3-based photo-Fenton catalysts with high efficiencies for antibiotic wastewaters remediation.


Assuntos
Elétrons , Peróxido de Hidrogênio , Antibacterianos , Catálise , Tetraciclina
18.
Environ Res ; 193: 110570, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33275922

RESUMO

Amino groups are successfully introduced on the surface of BiOBr nanosheets through a facile ammonia functionalization method. The surface morphology of the modified BiOBr hybrids varies on the concentration of applied ammonia solution. The active {001}-facet-exposed feature of nanosheets is well retained after amino-functionalization. With generation of small Bi2O4 nanoparticles on the surface of BiOBr nanosheets, the light adsorption of hybrids gradually shifts to the near infrared range. Compared to pure BiOBr with negligible activity, BOB10 hybrids exhibit superior photocatalytic activity for bacterial inactivation, with 7-log cells reduction in 40 min under LED irradiation. Amino functionalization endows BOB10 hybrids excellent adhesion capability towards surface negatively-charged bacterium Escherichia coli, which can significantly shortened access distance of the predominant •O2- and h+ guaranteeing their inactivation ability on cells membrane, thus leading to remarkable bacterial inactivation performance.


Assuntos
Bismuto , Escherichia coli , Catálise , Luz
19.
Environ Res ; 192: 110242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987005

RESUMO

Herein, the application of organic acids as chelating agent, including citric acid (CA), tartaric acid (TA), oxalic acid (OA) and ethylenediaminetetraacetic acid (EDTA), to enhance the degradation performance of MgO2/Fe(III) system was investigated in the terms of chelating agent dosage, Fe(III) dosage, reaction temperature, initial solution pH and inorganic anion. When the molar ratio of MgO2/Fe(III)/chelating agent was 1 : 0.7 : 0.3, the degradation efficiencies of Rhodamine B (RhB) increased from 6.7% (without chelating agent) to 42.3%, 98.5%, 48.9% and 25.8% within 30 min for CA, TA, OA, and EDTA, respectively. The promotion effect was mainly attributed to the chelation between chelating agents and Fe(III), rather than the acidification of chelating agents. The pseudo-first-order kinetic model well fitted RhB degradation in MgO2/Fe(III)/TA system, and the kinetic rate constant reached up to 0.295 min-1. Hydroxyl radical was confirmed to be the dominant active species to degrade organics in the MgO2/Fe(III)/TA system. Notably, the degradation system could work in a broad pH (3-11) and temperature (5-35 °C) range. Moreover, the MgO2/Fe(III)/TA system can also effectively degrade methylene blue, tetracycline and bisphenol A. This work provided a new, efficient and environmentally-friendly Fenton-like system for stubborn contaminant treatment.


Assuntos
Quelantes , Peróxido de Hidrogênio , Ferro , Óxido de Magnésio , Oxirredução
20.
J Hazard Mater ; 397: 122877, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32428704

RESUMO

Hierarchically three dimensional (3D) flower-like magnesium peroxide (MgO2) nanostructures were synthesized through a facile one-step precipitation method. The effects of magnesium salt, reaction temperature, precipitant and surfactant on the morphology and structure of MgO2 were systematically investigated. The as-obtained samples using magnesium sulfate, ammonia and trisodium citrate were composed of 3D flowers assembled by numerous nanosheets, and SO42- played a vital role in the formation of flower-like nanostructures. The 3D flower-like MgO2 possessed high active oxygen content of 24.10 wt% and large specific surface area of 385 m2/g. Ten mg of flower-like MgO2 could efficiently degrade 90 % of tetracycline (TC) within 60 min under stirring condition. ESR tests and radical quenching experiments suggested that hydroxyl radicals were crucial for TC degradation. Moreover, the column filled with flower-like MgO2 could quickly and efficiently eliminate TC with the assistance of air flow, and the degradation efficiency almost had no decrease even after twenty consecutive runs. Significantly, the concentrations of magnesium and iron ions dissolved in the filtrate from the column were far below the limits of drinking water standards. Additionally, the possible degradation pathways of TC were also proposed according to the determination of generated intermediates during the degradation process.


Assuntos
Nanoestruturas , Tetraciclina , Compostos de Magnésio , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...