Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 599, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238324

RESUMO

In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Camundongos , Células Ganglionares da Retina/fisiologia , Células Amácrinas/fisiologia , Sinapses/fisiologia
2.
PLoS Comput Biol ; 16(12): e1008437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320887

RESUMO

The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra/anatomia & histologia , Animais , Comunicação Celular , Diferenciação Celular , Simulação por Computador , Peixe-Zebra/crescimento & desenvolvimento
3.
Curr Biol ; 30(7): 1258-1268.e2, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109390

RESUMO

Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.


Assuntos
Células Amácrinas/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Microscopia Eletrônica
4.
Nat Commun ; 10(1): 2167, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092821

RESUMO

Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity.


Assuntos
Células Fotorreceptoras Retinianas Cones/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Microscopia Intravital/métodos , Luz , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Estimulação Luminosa , Cultura Primária de Células , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Imagem com Lapso de Tempo/métodos , Proteína Vermelha Fluorescente
5.
J Comp Neurol ; 527(1): 174-186, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29405294

RESUMO

Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the 'ON' or 'OFF' synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision. We thus investigated whether the human fovea exhibits a developmental path for ON and OFF ChAT cells that is retinal location-specific. Our analysis shows that at each retinal location, human ON and OFF ChAT cells differentiate, form their separate synaptic layers, and establish non-random mosaics at about the same time. However, unlike in the adult fovea, ChAT immunostaining is initially robust in both ON and OFF populations, up until at least mid-gestation. ChAT expression in the OFF layer in the fovea is therefore significantly reduced after mid-gestation. OFF ChAT cells in the human fovea and in the retinal periphery thus follow distinct maturational paths.


Assuntos
Células Amácrinas/citologia , Neurônios Colinérgicos/citologia , Neurogênese/fisiologia , Células Amácrinas/fisiologia , Animais , Diferenciação Celular/fisiologia , Neurônios Colinérgicos/fisiologia , Feto , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell Rep ; 25(8): 2017-2026.e3, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463000

RESUMO

Sensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs.


Assuntos
Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Glutamatos/metabolismo , Camundongos , Células Bipolares da Retina/metabolismo , Peixe-Zebra/metabolismo
7.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100184

RESUMO

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Assuntos
Heparitina Sulfato/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Glicopeptídeos/análise , Heparitina Sulfato/química , Humanos , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência
8.
Neural Dev ; 13(1): 12, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875009

RESUMO

Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.


Assuntos
Glicina/metabolismo , Rede Nervosa/fisiologia , Sistema Nervoso/citologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Mamíferos
9.
Brain ; 141(7): 1963-1980, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931057

RESUMO

Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.


Assuntos
Dendritos/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Sinapses/patologia , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Glaucoma , Insulina/fisiologia , Insulina/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Nervo Óptico/citologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Retina/lesões , Células Ganglionares da Retina/citologia , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Serina-Treonina Quinases TOR/metabolismo
10.
Neuron ; 97(3): 596-610.e8, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29395912

RESUMO

In contrast with numerous studies of glutamate receptor-associated proteins and their involvement in the modulation of excitatory synapses, much less is known about mechanisms controlling postsynaptic GABAA receptor (GABAAR) numbers. Using tandem affinity purification from tagged GABAAR γ2 subunit transgenic mice and proteomic analysis, we isolated several GABAAR-associated proteins, including Cleft lip and palate transmembrane protein 1 (Clptm1). Clptm1 interacted with all GABAAR subunits tested and promoted GABAAR trapping in the endoplasmic reticulum. Overexpression of Clptm1 reduced GABAAR-mediated currents in a recombinant system, in cultured hippocampal neurons, and in brain, with no effect on glycine or AMPA receptor-mediated currents. Conversely, knockdown of Clptm1 increased phasic and tonic inhibitory transmission with no effect on excitatory synaptic transmission. Furthermore, altering the expression level of Clptm1 mimicked activity-induced inhibitory synaptic scaling. Thus, in complement to other GABAAR-associated proteins that promote receptor surface expression, Clptm1 limits GABAAR forward trafficking and regulates inhibitory homeostatic plasticity.


Assuntos
Potenciais Pós-Sinápticos Inibidores , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Hipocampo/metabolismo , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteômica , Ratos
11.
Dev Cell ; 43(6): 763-779.e4, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29233477

RESUMO

Clinical and genetic heterogeneity associated with retinal diseases makes stem-cell-based therapies an attractive strategy for personalized medicine. However, we have limited understanding of the timing of key events in the developing human retina, and in particular the factors critical for generating the unique architecture of the fovea and surrounding macula. Here we define three key epochs in the transcriptome dynamics of human retina from fetal day (D) 52 to 136. Coincident histological analyses confirmed the cellular basis of transcriptional changes and highlighted the dramatic acceleration of development in the fovea compared with peripheral retina. Human and mouse retinal transcriptomes show remarkable similarity in developmental stages, although morphogenesis was greatly expanded in humans. Integration of DNA accessibility data allowed us to reconstruct transcriptional networks controlling photoreceptor differentiation. Our studies provide insights into human retinal development and serve as a resource for molecular staging of human stem-cell-derived retinal organoids.


Assuntos
Neurogênese/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Fóvea Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Macula Lutea/embriologia , Camundongos , Morfogênese , Neurogênese/genética , Neurônios/metabolismo , Retina/embriologia , Retina/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Transcriptoma
12.
Cell ; 168(3): 413-426.e12, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129540

RESUMO

The fovea is a specialized region of the retina that dominates the visual perception of primates by providing high chromatic and spatial acuity. While the foveal and peripheral retina share a similar core circuit architecture, they exhibit profound functional differences whose mechanisms are unknown. Using intracellular recordings and structure-function analyses, we examined the cellular and synaptic underpinnings of the primate fovea. Compared to peripheral vision, the fovea displays decreased sensitivity to rapid variations in light inputs; this difference is reflected in the responses of ganglion cells, the output cells of the retina. Surprisingly, and unlike in the periphery, synaptic inhibition minimally shaped the responses of foveal midget ganglion cells. This difference in inhibition cannot however, explain the differences in the temporal sensitivity of foveal and peripheral midget ganglion cells. Instead, foveal cone photoreceptors themselves exhibited slower light responses than peripheral cones, unexpectedly linking cone signals to perceptual sensitivity.


Assuntos
Fóvea Central/fisiologia , Macaca/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Visual , Animais , Cinética , Células Fotorreceptoras de Vertebrados/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses
13.
J Neurosci ; 36(35): 9240-52, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581463

RESUMO

UNLABELLED: Key issues concerning ganglion cell type-specific loss and synaptic changes in animal models of experimental glaucoma remain highly debated. Importantly, changes in the structure and function of various RGC types that occur early, within 14 d after acute, transient intraocular pressure elevation, have not been previously assessed. Using biolistic transfection of individual RGCs and multielectrode array recordings to measure light responses in mice, we examined the effects of laser-induced ocular hypertension on the structure and function of a subset of RGCs. Among the α-like RGCs studied, αOFF-transient RGCs exhibited higher rates of cell death, with corresponding reductions in dendritic area, dendritic complexity, and synapse density. Functionally, OFF-transient RGCs displayed decreases in spontaneous activity and receptive field size. In contrast, neither αOFF-sustained nor αON-sustained RGCs displayed decreases in light responses, although they did exhibit a decrease in excitatory postsynaptic sites, suggesting that synapse loss may be one of the earliest signs of degeneration. Interestingly, presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer, corroborating the hypothesis that RGCs with dendrites stratifying in the OFF sublamina may be damaged early. Indeed, OFF arbors of ON-OFF RGCs lose complexity more rapidly than ON arbors. Our results reveal type-specific differences in RGC responses to injury with a selective vulnerability of αOFF-transient RGCs, and furthermore, an increased susceptibility of synapses in the OFF sublamina. The selective vulnerability of specific RGC types offers new avenues for the design of more sensitive functional tests and targeted neuroprotection. SIGNIFICANCE STATEMENT: Conflicting reports regarding the selective vulnerability of specific retinal ganglion cell (RGC) types in glaucoma exist. We examine, for the first time, the effects of transient intraocular pressure elevation on the structure and function of various RGC types. Among the α-like RGCs studied, αOFF-transient RGCs are the most vulnerable to transient transient intraocular pressure elevation as measured by rates of cell death, morphologic alterations in dendrites and synapses, and physiological dysfunction. Specifically, we found that presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer. Our results suggest selective vulnerability both of specific types of RGCs and of specific inner plexiform layer sublaminae, opening new avenues for identifying novel diagnostic and treatment targets in glaucoma.


Assuntos
Pressão Intraocular/fisiologia , Hipertensão Ocular/patologia , Células Ganglionares da Retina/patologia , Sinapses/patologia , Oxirredutases do Álcool/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colina O-Acetiltransferase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Potenciais Evocados/fisiologia , Feminino , Guanilato Quinases/metabolismo , Pressão Intraocular/genética , Lasers/efeitos adversos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neurofilamentos , Hipertensão Ocular/etiologia , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia , Estatísticas não Paramétricas , Sinapses/fisiologia , Fatores de Tempo , Transdução Genética
14.
Curr Biol ; 26(15): 2070-2077, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27426514

RESUMO

Excitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2]. Bipolar but not amacrine cell synapses have presynaptic ribbon-like structures at their transmitter release sites. We identified a monopolar interneuron in the mouse retina that resembles amacrine cells morphologically but is glutamatergic and, unexpectedly, makes ribbon synapses. These glutamatergic monopolar interneurons (GluMIs) do not receive direct photoreceptor input, and their light responses are strongly shaped by both ON and OFF pathway-derived inhibitory input. GluMIs contact and make almost as many synapses as type 2 OFF bipolar cells onto OFF-sustained A-type (AOFF-S) retinal ganglion cells (RGCs). However, GluMIs and type 2 OFF bipolar cells possess functionally distinct light-driven responses and may therefore mediate separate components of the excitatory synaptic input to AOFF-S RGCs. The identification of GluMIs thus unveils a novel cellular component of excitatory circuits in the vertebrate retina, underscoring the complexity in defining cell types even in this well-characterized region of the CNS.


Assuntos
Células Amácrinas/citologia , Neurônios GABAérgicos/citologia , Ácido Glutâmico/metabolismo , Células Ganglionares da Retina/citologia , Células Amácrinas/metabolismo , Células Amácrinas/ultraestrutura , Animais , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
15.
Nat Methods ; 13(6): 485-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064647

RESUMO

Expansion microscopy is a technique in which fluorophores on fixed specimens are linked to a swellable polymer that is physically expanded to enable super-resolution microscopy with ordinary microscopes. We have developed and characterized new methods for linking fluorophores to the polymer that now enable expansion microscopy with conventional fluorescently labeled antibodies and fluorescent proteins. Our methods simplify the procedure and expand the palette of compatible labels, allowing rapid dissemination of the technique.


Assuntos
Anticorpos Monoclonais , Aumento da Imagem/métodos , Proteínas Luminescentes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Animais , Encéfalo/ultraestrutura , Linhagem Celular , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem , Transfecção
16.
Proc Natl Acad Sci U S A ; 112(41): 12840-5, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420868

RESUMO

Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells. We found that axonal GABA but not glycine receptor expression depends on neurotransmission. Importantly, axonal and dendritic GABAA receptors comprise distinct subunit compositions that are regulated differentially by GABA release: Axonal GABAA receptors are down-regulated but dendritic receptors are up-regulated in the absence of inhibition. The homeostatic increase in GABAA receptors on bipolar cell dendrites is pathway-specific: Cone but not rod bipolar cell dendrites maintain an up-regulation of receptors in the transmission deficient mutants. Furthermore, the bipolar cell GABAA receptor alterations are a consequence of impaired vesicular GABA release from amacrine but not horizontal interneurons. Thus, inhibitory neurotransmission regulates in vivo postsynaptic maturation of inhibitory synapses with contrasting modes of action specific to synapse type and location.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Receptores de GABA-A/metabolismo , Células Bipolares da Retina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Dendritos/genética , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/genética , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sinapses/genética
17.
J Biol Chem ; 289(42): 29350-64, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25190809

RESUMO

Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Endocitose , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/metabolismo , Transporte Proteico/genética , Proteoma , Transmissão Sináptica/fisiologia , Transgenes
18.
Neuron ; 83(6): 1303-1318, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25233313

RESUMO

Across the nervous system, neurons form highly stereotypic patterns of synaptic connections that are designed to serve specific functions. Mature wiring patterns are often attained upon the refinement of early, less precise connectivity. Much work has led to the prevailing view that many developing circuits are sculpted by activity-dependent competition among converging afferents, which results in the elimination of unwanted synapses and the maintenance and strengthening of desired connections. Studies of the vertebrate retina, however, have recently revealed that activity can play a role in shaping developing circuits without engaging competition among converging inputs that differ in their activity levels. Such neurotransmission-mediated processes can produce stereotypic wiring patterns by promoting selective synapse formation rather than elimination. We discuss how the influence of transmission may also be limited by circuit design and further highlight the importance of transmission beyond development in maintaining wiring specificity and synaptic organization of neural circuits.


Assuntos
Vias Neurais/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos
19.
J Physiol ; 592(22): 4809-23, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172948

RESUMO

The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.


Assuntos
Conectoma , Retina/fisiologia , Animais , Camundongos , Imagem Óptica , Retina/citologia , Vias Visuais/fisiologia
20.
Prog Retin Eye Res ; 42: 44-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24984227

RESUMO

Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.


Assuntos
Retina/anatomia & histologia , Retina/fisiologia , Doenças Retinianas/fisiopatologia , Visão Ocular/fisiologia , Animais , Humanos , Morfogênese , Retina/citologia , Neurônios Retinianos/citologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...