Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38514013

RESUMO

Xenotransplantation offers the potential to meet the critical need for heart and lung transplantation presently constrained by the current human donor organ supply. Much was learned over the past decades regarding gene editing to prevent the immune activation and inflammation that cause early organ injury, and strategies for maintenance of immunosuppression to promote longer-term xenograft survival. However, many scientific questions remain regarding further requirements for genetic modification of donor organs, appropriate contexts for xenotransplantation research (including nonhuman primates, recently deceased humans, and living human recipients), and risk of xenozoonotic disease transmission. Related ethical questions include the appropriate selection of clinical trial participants, challenges with obtaining informed consent, animal rights and welfare considerations, and cost. Research involving recently deceased humans has also emerged as a potentially novel way to understand how xeno-organs will impact the human body. Clinical xenotransplantation and research involving decedents also raise ethical questions and will require consensus regarding regulatory oversight and protocol review. These considerations and the related opportunities for xenotransplantation research were discussed in a workshop sponsored by the National Heart, Lung, and Blood Institute, and are summarized in this meeting report.

2.
J Am Coll Cardiol ; 81(15): 1524-1542, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36958952

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most common forms of heart failure; its prevalence is increasing, and outcomes are worsening. Affected patients often experience severe exertional dyspnea and debilitating fatigue, as well as poor quality of life, frequent hospitalizations, and a high mortality rate. Until recently, most pharmacological intervention trials for HFpEF yielded neutral primary outcomes. In contrast, trials of exercise-based interventions have consistently demonstrated large, significant, clinically meaningful improvements in symptoms, objectively determined exercise capacity, and usually quality of life. This success may be attributed, at least in part, to the pleiotropic effects of exercise, which may favorably affect the full range of abnormalities-peripheral vascular, skeletal muscle, and cardiovascular-that contribute to exercise intolerance in HFpEF. Accordingly, this scientific statement critically examines the currently available literature on the effects of exercise-based therapies for chronic stable HFpEF, potential mechanisms for improvement of exercise capacity and symptoms, and how these data compare with exercise therapy for other cardiovascular conditions. Specifically, data reviewed herein demonstrate a comparable or larger magnitude of improvement in exercise capacity from supervised exercise training in patients with chronic HFpEF compared with those with heart failure with reduced ejection fraction, although Medicare reimbursement is available only for the latter group. Finally, critical gaps in implementation of exercise-based therapies for patients with HFpEF, including exercise setting, training modalities, combinations with other strategies such as diet and medications, long-term adherence, incorporation of innovative and more accessible delivery methods, and management of recently hospitalized patients are highlighted to provide guidance for future research.


Assuntos
Cardiologia , Insuficiência Cardíaca , Idoso , Humanos , Estados Unidos/epidemiologia , Insuficiência Cardíaca/terapia , Qualidade de Vida , Volume Sistólico/fisiologia , American Heart Association , Tolerância ao Exercício/fisiologia , Medicare , Exercício Físico/fisiologia
3.
Circulation ; 147(16): e699-e715, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36943925

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most common forms of heart failure; its prevalence is increasing, and outcomes are worsening. Affected patients often experience severe exertional dyspnea and debilitating fatigue, as well as poor quality of life, frequent hospitalizations, and a high mortality rate. Until recently, most pharmacological intervention trials for HFpEF yielded neutral primary outcomes. In contrast, trials of exercise-based interventions have consistently demonstrated large, significant, clinically meaningful improvements in symptoms, objectively determined exercise capacity, and usually quality of life. This success may be attributed, at least in part, to the pleiotropic effects of exercise, which may favorably affect the full range of abnormalities-peripheral vascular, skeletal muscle, and cardiovascular-that contribute to exercise intolerance in HFpEF. Accordingly, this scientific statement critically examines the currently available literature on the effects of exercise-based therapies for chronic stable HFpEF, potential mechanisms for improvement of exercise capacity and symptoms, and how these data compare with exercise therapy for other cardiovascular conditions. Specifically, data reviewed herein demonstrate a comparable or larger magnitude of improvement in exercise capacity from supervised exercise training in patients with chronic HFpEF compared with those with heart failure with reduced ejection fraction, although Medicare reimbursement is available only for the latter group. Finally, critical gaps in implementation of exercise-based therapies for patients with HFpEF, including exercise setting, training modalities, combinations with other strategies such as diet and medications, long-term adherence, incorporation of innovative and more accessible delivery methods, and management of recently hospitalized patients are highlighted to provide guidance for future research.


Assuntos
Cardiologia , Insuficiência Cardíaca , Idoso , Humanos , Estados Unidos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Qualidade de Vida , Volume Sistólico/fisiologia , American Heart Association , Tolerância ao Exercício/fisiologia , Medicare , Exercício Físico/fisiologia
4.
Circ Res ; 131(8): 713-724, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173825

RESUMO

Spurred by the 2016 release of the National Heart, Lung, and Blood Institute's Strategic Vision, the Division of Cardiovascular Sciences developed its Strategic Vision Implementation Plan-a blueprint for reigniting the decline in cardiovascular disease (CVD) mortality rates, improving health equity, and accelerating translation of scientific discoveries into better cardiovascular health (CVH). The 6 scientific focus areas of the Strategic Vision Implementation Plan reflect the multifactorial nature of CVD and include (1) addressing social determinants of CVH and health inequities, (2) enhancing resilience, (3) promoting CVH and preventing CVD across the lifespan, (4) eliminating hypertension-related CVD, (5) reducing the burden of heart failure, and (6) preventing vascular dementia. This article presents an update of strategic vision implementation activities within Division of Cardiovascular Sciences. Overarching and cross-cutting themes include training the scientific workforce and engaging the extramural scientific community to stimulate transformative research in cardiovascular sciences. In partnership with other NIH Institutes, Federal agencies, industry, and the extramural research community, Division of Cardiovascular Sciences strategic vision implementation has stimulated development of numerous workshops and research funding opportunities. Strategic Vision Implementation Plan activities highlight innovative intervention modalities, interdisciplinary systems approaches to CVD reduction, a life course framework for CVH promotion and CVD prevention, and multi-pronged research strategies for combatting COVID-19. As new knowledge, technologies, and areas of scientific research emerge, Division of Cardiovascular Sciences will continue its thoughtful approach to strategic vision implementation, remaining poised to seize emerging opportunities and catalyze breakthroughs in cardiovascular sciences.


Assuntos
COVID-19 , Cardiopatias , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos/epidemiologia
5.
Circ Res ; 124(4): 491-497, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31031412

RESUMO

As we commemorate the 70th Anniversary of the National Heart, Lung, and Blood Institute (NHLBI) and celebrate important milestones that have been achieved by the Division of Cardiovascular Sciences (DCVS), it is imperative that DCVS and the Extramural Research community at-large continue to address critical public health challenges that persist within the area of Cardiovascular Diseases (CVD). The NHLBI's Strategic Vision, developed with extensive input from the extramural research community and published in 2016, included overarching goals and strategic objectives that serve to provide a general blueprint for sustaining the legacy of the Institute by leveraging opportunities in emerging scientific areas (e.g., regenerative medicine, omics technology, data science, precision medicine, and mobile health), finding new ways to address enduring challenges (e.g., social determinants of health, health inequities, prevention, and health promotion), and training the next generation of heart, lung, blood, and sleep researchers. DCVS has developed a strategic vision implementation plan to provide a cardiovascular framing for the pursuit of the Institute's overarching goals and strategic objectives garnered from the input of the broader NHLBI community. This plan highlights six scientific focus areas that demonstrate a cross-cutting and multifaceted approach to addressing cardiovascular sciences, including 1) addressing social determinants of cardiovascular health (CVH) and health inequities, 2) enhancing resilience, 3) promoting CVH and preventing CVD Across the lifespan, 4) eliminating hypertension-related CVD, 5) reducing the burden of heart failure, and 6) preventing vascular dementia. These priorities will guide our efforts in Institute-driven activities in the coming years but will not exclude development of other novel ideas or the support of investigator-initiated grant awards. The DCVS Strategic Vision implementation plan is a living document that will evolve with iterative dialogue with the NHLBI community and adapt as the dynamic scientific landscape changes to seize emerging opportunities.


Assuntos
Cardiologia/normas , Doenças Cardiovasculares/terapia , National Heart, Lung, and Blood Institute (U.S.) , Guias de Prática Clínica como Assunto , Cardiologia/economia , Cardiologia/tendências , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Humanos , Estados Unidos
8.
Circ Res ; 110(7): 915-21, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461362

RESUMO

Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature's solutions to heart, lung, blood, and sleep disorders through future research in this area.


Assuntos
Pesquisa Biomédica/tendências , Cardiopatias/terapia , Doenças Hematológicas/terapia , Pneumopatias/terapia , Modelos Animais , Transtornos do Sono-Vigília/terapia , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Mergulho/fisiologia , Hibernação/fisiologia , Humanos , Hipóxia/fisiopatologia , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Estados Unidos
9.
J Mol Cell Cardiol ; 49(4): 693-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20600099

RESUMO

Prolonged cardiac overexpression of the mitochondrial biogenesis regulatory transcriptional coactivator PGC-1alpha disrupts cardiac contractile function and its genetic ablation limits cardiac capacity to enhance workload. In contrast, transient induction of PGC-1alpha alleviates neuronal cell oxidative stress and enhances skeletal myotube anti-oxidant defenses. We explored whether transient upregulation of PGC-1alpha in the heart protects against ischemia-reperfusion injury. The transient induction of PGC-1alpha in the cardiac-restricted inducible PGC-1alpha transgenic mouse, increased PGC-1alpha protein levels 5-fold. Following 25 min of ischemia and 2h of reperfusion on a Langendorff perfusion apparatus, contractile recovery and the rate pressure product was significantly blunted in mice overexpressing PGC-1alpha vs. controls. Affymetrix gene array analysis showed a 3-fold PGC-1alpha-mediated upregulation of adenine nucleotide translocase 1 (ANT1). As ANT1 upregulation induces cardiomyocyte cell death we investigated whether the induction of ANT1 by PGC-1alpha contributes to this enhanced ischemia-stress susceptibility. Infection with adenovirus harboring PGC-1alpha into cardiac-derived H9c2 cells significantly upregulates ANT1 without changing basal cell viability. In response to anoxia-reoxygenation injury cell death is significantly increased following PGC-1alpha overexpression. This detrimental effect is abolished following siRNA knockdown of ANT1. Similarly, the attenuation of ANT-1 in the presence of PGC-1alpha overexpression preserves the mitochondrial membrane potential in response to hydrogen-peroxide stress. Interestingly, the isolated knockdown of ANT1 also protects H9c2 cells from anoxia-reoxygenation injury. Taken together these data suggest that transient induction of PGC-1alpha in the murine heart decreases ischemia-reperfusion contractile recovery and diminishes anoxia-reoxygenation tolerance in H9c2 cells. These adverse phenotypes appear to be mediated, in part, by PGC-1alpha induced upregulation of ANT1.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Traumatismo por Reperfusão/metabolismo , Transativadores/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Traumatismo por Reperfusão/genética , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...