Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(9): e9337, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188514

RESUMO

To offset the declining timber supply by shifting towards more sustainable forestry practices, industrial tree plantations are expanding in tropical production forests. The conversion of natural forests to tree plantation is generally associated with loss of biodiversity and shifts towards more generalist and disturbance tolerant communities, but effects of mixed-landuse landscapes integrating natural and plantation forests remain little understood. Using camera traps, we surveyed the medium-to-large bodied terrestrial wildlife community across two mixed-landuse forest management areas in Sarawak, Malaysia Borneo which include areas dedicated to logging of natural forests and adjacent planted Acacia forests. We analyzed data from a 25-wildlife species community using a Bayesian community occupancy model to assess species richness and species-specific occurrence responses to Acacia plantations at a broad scale, and to remote-sensed local habitat conditions within the different forest landuse types. All species were estimated to occur in both landuse types, but species-level percent area occupied and predicted average local species richness were slightly higher in the natural forest management areas compared to licensed planted forest management areas. Similarly, occupancy-based species diversity profiles and defaunation indices for both a full community and only threatened and endemic species suggested the diversity and occurrence were slightly higher in the natural forest management areas. At the local scale, forest quality was the most prominent predictor of species occurrence. These associations with forest quality varied among species but were predominantly positive. Our results highlight the ability of a mixed-landuse landscape with small-scale Acacia plantations embedded in natural forests to retain terrestrial wildlife communities while providing an alternate source of timber. Nonetheless, there was a tendency towards reduced biodiversity in planted forests, which would likely be more pronounced in plantations that are larger or embedded in a less natural matrix.

2.
Commun Biol ; 2: 396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701025

RESUMO

Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.


Assuntos
Biodiversidade , Clima Tropical , Animais , Sudeste Asiático , Teorema de Bayes , Aves , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Ecossistema , Extinção Biológica , Mamíferos , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...