Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Part Ther ; 8(2): 28-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722809

RESUMO

PURPOSE: Advances in radiotherapy have improved tumor control and reduced toxicity in the management of nasopharyngeal carcinoma (NPC). Local failure remains a problem for some patients with advanced primary tumors, and toxicities are significant given the large treatment volume and tumor proximity to critical structures, even with modern photon-based radiotherapy. Proton therapy has unique dosimetric advantages, and recent technological advances now allow delivery of intensity-modulated proton therapy (IMPT), which can potentially improve the therapeutic ratio in NPC. We report our 2-year clinical outcomes with IMPT for NPC. MATERIALS AND METHODS: We retrospectively reviewed treatment records of patients with NPC treated with IMPT at our center. Demographics, dosimetry, tumor response, local regional control (LRC), distant metastasis, overall survival, and acute and late toxicity outcomes were reviewed. Analyses were performed with descriptive statistics and Kaplan-Meier method. Toxicity was graded per Common Terminology Criteria for Adverse Events (version 4.0). RESULTS: Twenty-six patients were treated from 2015 to 2020. Median age was 48 years (range, 19-73 years), 62% (n = 16) had T3-T4 disease, 92% (n = 24) were node positive, 92% (n = 24) had stage III-IV disease, and 69% (n = 18) had positive results for Epstein-Barr virus. Dose-painted pencil-beam IMPT was used. Most patients (85%; 22 of 26) were treated with 70 Gy(RBE) in 33 fractions once daily; 4 (15%) underwent hyperfractionated accelerated treatment twice daily. All received concurrent cisplatin chemotherapy; 7 (27%) also received induction chemotherapy. All patients (100%) completed the planned radiotherapy, and no acute or late grade 4 or 5 toxicities were observed. At median follow-up of 25 months (range, 4-60), there were 2 local regional failures (8%) and 3 distant metastases (12%). The Kaplan-Meier 2-year LRC, freedom from distant metastasis, and overall survival were 92%, 87%, and 85% respectively. CONCLUSION: IMPT is feasible in locally advanced NPC with early outcomes demonstrating excellent LRC and favorable toxicity profile. Our data add to the growing body of evidence supporting the clinical use of IMPT for NPC.

2.
Int J Radiat Oncol Biol Phys ; 104(2): 374-382, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763658

RESUMO

PURPOSE: This study examines the relationship between dose to corneal substructures and incidence of corneal toxicity within 6 months of proton beam therapy (PBT) for uveal melanoma. We aim to develop clinically meaningful dose constraints that can be used to mitigate corneal toxicity. METHODS AND MATERIALS: Ninety-two patients were treated with PBT between 2015 and 2017 and evaluated for grade 2+ (GR2+) intervention-requiring corneal toxicity in our prospectively maintained database. Most patients were treated with 50 Gy (relative biological effectiveness [RBE]) in 5 fractions, and all had complete six-month follow-up. Analyses included Mann-Whitney, χ2, Fisher exact, and receiver operating curve tests to identify risk factors for GR2+ toxicity. Bivariate logistic regression was used to identify independent dose-volume histogram (DVH) predictors of toxicity after adjustment for the most important clinical risk factor. RESULTS: The 6-month PBT GR2+ corneal toxicity rate was 10.9%, with half of patients experiencing grade 2 toxicity and half experiencing grade 3 toxicity, with no grade 4 events. Patients with anterior chamber tumors had a higher risk (58.3%) for toxicity than those with posterior tumors (0%) or posterior tumors extending past the equator (25%, P < .0001). On univariate analysis, larger size according to Collaborative Ocular Melanoma Studies was associated with increased toxicity rate (P < .004). DVH analysis revealed that cutoffs of 58% for V25, 32% for V45, 51.8 Gy (RBE) for maximum dose, and 32 Gy (RBE) for mean dose to the cornea separated patients into groups experiencing and not experiencing toxicity with 90% sensitivity and ≥96% specificity. Bivariate logistic regression indicated that corneal V25, V45, and mean dose independently predicted for toxicity after adjusting for tumor location. CONCLUSIONS: Patients receiving PBT for anterior uveal melanomas experience a high rate of GR2+ corneal toxicity because of increased corneal dose. Anterior location and corneal DVH parameters independently predict toxicity risk. We propose dosimetric constraints to facilitate treatment planning and toxicity mitigation.


Assuntos
Córnea/efeitos da radiação , Melanoma/radioterapia , Terapia com Prótons/efeitos adversos , Lesões por Radiação/etiologia , Neoplasias Uveais/radioterapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Feminino , Humanos , Incidência , Limbo da Córnea/efeitos da radiação , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Doses de Radiação , Lesões por Radiação/epidemiologia , Lesões por Radiação/patologia , Radioterapia Guiada por Imagem , Eficiência Biológica Relativa , Fatores de Risco , Fatores de Tempo , Neoplasias Uveais/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...