Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Biochem Pharmacol ; : 116187, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561090

RESUMO

Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid ß-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.

2.
Br J Pharmacol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430056

RESUMO

BACKGROUND AND PURPOSE: Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH: BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS: In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of ß2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS: Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.

3.
Handb Exp Pharmacol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418669

RESUMO

Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.

6.
Respir Res ; 24(1): 269, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932719

RESUMO

BACKGROUND: Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS: We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS: ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS: This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.


Assuntos
Asma , Hipersensibilidade , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Alveolares , Animais , Humanos , Camundongos , Adiponectina , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Pyroglyphidae , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
7.
Pharmacol Res ; 196: 106929, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717682

RESUMO

Severe asthma is a difficult-to-treat chronic airway inflammatory disease requiring systemic corticosteroids to achieve asthma control. It has recently been shown that drugs targeting immunometabolism have elicited anti-inflammatory effects. The purpose of this study was to investigate potential immunometabolic modulatory actions of systemic dexamethasone (Dex) in an Aspergillus fumigatus (Af)-induced severe asthma model. Mice were repeatedly exposed to the Af aeroallergen before systemic treatment with Dex. Simultaneous measurements of airway inflammation, real-time glycolytic and oxidative phosphorylation (OXPHOS) activities, expression levels of key metabolic enzymes, and amounts of metabolites were studied in lung tissues, and in primary alveolar macrophages (AMs) and eosinophils. Dex markedly reduced Af-induced eosinophilic airway inflammation, which was coupled with an overall reduction in lung glycolysis, glutaminolysis, and fatty acid synthesis. The anti-inflammatory effects of Dex may stem from its immunometabolic actions by downregulating key metabolic enzymes including pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase. Substantial suppression of eosinophilic airway inflammation by Dex coincided with a specific escalation of mitochondrial proton leak in primary lung eosinophils. Besides, while our findings confirmed that inflammation corresponds with an upregulation of glycolysis, it was accompanied with an unexpectedly stable or elevated OXPHOS in the lungs and activated immune cells, respectively. Our findings reveal that the anti-inflammatory effects of Dex in severe asthma are associated with downregulation of pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase, and the augmentation of mitochondrial proton leak in lung eosinophils. These enzymes and biological processes may be valuable targets for therapeutic interventions against severe asthma.

8.
Adv Pharmacol ; 98: 111-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524485

RESUMO

Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.


Assuntos
Sistema Renina-Angiotensina , Doenças Respiratórias , Humanos , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais , Fibrose , Angiotensinas/metabolismo , Angiotensinas/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo
9.
Pharmacol Res ; 194: 106861, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480973

RESUMO

The p38MAPK-MK2 signaling axis functions as an initiator of inflammation. Targeting the p38MAPK-MK2 signaling axis represents a direct therapeutic intervention of inflammatory diseases. We described here a novel role of andrographolide (AG), a small-molecule ent-labdane natural compound, as an inhibitor of p38MAPK-MK2 axis via MK2 degradation. AG was found to bind to the activation loop of MK2, located at the interface of the p38MAPK-MK2 biomolecular complex. This interaction disrupted the complex formation and predisposed MK2 to proteasome-mediated degradation. We showed that AG induced MK2 degradation in a concentration- and time-dependent manner and exerted its anti-inflammatory effects by enhancing the mRNA-destabilizing activity of tristetraprolin, thereby inhibiting pro-inflammatory mediator production (e.g., TNF-α, MCP-1). Administration of AG via intratracheal (i.t.) route to mice induced MK2 downregulation in lung alveolar macrophages, but not lung tissues, and prevented macrophage activation. Our study also demonstrated that the anti-inflammatory effects achieved by AG via MK2 degradation were more durable and sustained than that achieved by the conventional MK2 kinase inhibitors (e.g., PF-3644022). Taken together, our findings illustrated a novel mode of action of AG by modulating the p38MAPK-MK2 signaling axis and would pave the way for the development of a novel class of anti-inflammatory agents targeting MK2 for degradation by harnessing the privileged scaffold of AG.


Assuntos
Diterpenos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Pharmacol Res ; 184: 106469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167278

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. Cumulative evidence has implicated renin-angiotensin system (RAS) in the pathogenesis of COPD. Alveolar macrophages (AMs) are the first line immune defense in the respiratory system and play a critical role in the lung homeostasis. This study aimed to investigate the role of AMs in contributing to the protective effects of angiotensin II type-2 receptor (AT2R) activation in cigarette smoke (CS)-induced COPD. The AM polarization, phagocytosis and metabolism, and the underlying biochemical mechanisms of compound 21 (C21), a selective and potent non-peptide small molecule AT2R agonist, were evaluated in a two-week CS-induced COPD mouse model. C21 restored AM phagocytosis ability, reversing CS-induced AM phagocytosis impairment. CS exposure polarized AMs towards M1 phenotype, whereas, C21 skewed the CS-exposed AMs towards M2 phenotype. C21 reprogrammed CS-exposed AM metabolism from a high glycolysis-driven process to support inflammation energy demand to a high mitochondrial respiration process to limit inflammation. Besides, C21 upregulated AT2R and Mas receptor levels in CS-exposed AMs, favoring the anti-inflammatory Ang II/AT2R axis and Ang 1-7/Mas axis in the RAS. C21 restored the normal levels of sirtuin 1 (SIRT1) and MAPK phosphatase 1 (MKP1) in CS-exposed AMs, leading to the reduction of phospho-p38, phospho-ERK and p65 subunit of NF-κB levels in CS-exposed AMs. We report here for the first time that AT2R agonist C21 acts by boosting the protective functions of AMs against CS-induced COPD, and our results support the development of AT2R agonist for the treatment of COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Angiotensina II/metabolismo , Animais , Fumar Cigarros/efeitos adversos , Imidazóis , Inflamação/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Fosfatases da Proteína Quinase Ativada por Mitógeno , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptor Tipo 2 de Angiotensina/metabolismo , Sirtuína 1/metabolismo , Sulfonamidas , Tiofenos , Nicotiana
12.
Mol Med ; 28(1): 72, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752760

RESUMO

BACKGROUND: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are clinical syndromes characterized by acute lung inflammation, pulmonary edema and hypoxemia, with up to 50% mortality rate without effective pharmacological therapy. Following the acute inflammation, repair and remodeling occurs which in some cases resulting in lung fibrosis. The pathophysiology of ALI/ARDS remains incompletely understood. Lipopolysaccharide (LPS)-induced ALI in mice have been widely used as a model to study human ALI/ARDS. Isthmin 1 (ISM1) is a secreted protein highly abundant in mouse lung. We have previously reported that upon intratracheal LPS instillation, ISM1 expression in the lung is further upregulated. Recently, we also reported that ISM1 is an anti-inflammatory protein in the lung with Ism1-/- mice presenting spontaneous chronic low-grade lung inflammation and obvious emphysema at young adult stage. However, what role ISM1 plays in ALI/ARDS and lung fibrosis remain unclear. METHODS: Using Ism1-/- mice and intratracheal LPS-induced ALI, and local delivery of recombinant ISM1 (rISM1), we investigated the role ISM1 plays in ALI and post-ALI lung fibrosis using flow cytometry, Western blot, antibody array, immunohistochemistry (IHC), immunofluorescent and other histological staining. RESULTS: We reveal that ISM1 deficiency in mice led to an intensified acute lung inflammation upon intratracheal LPS challenge, with a heightened leukocyte infiltration including neutrophils and monocyte-derived alveolar macrophages, as well as upregulation of multiple pro-inflammatory cytokines/chemokines including tumor necrosis factor α (TNF-α). Although innate immune cells largely subsided to the baseline by day 7 post-LPS challenge in both wild-type and Ism1-/- mice, Ism1-/- lung showed increased post-ALI fibrosis from day 9 post-LPS treatment with increased myofibroblasts, excessive collagen accumulation and TGF-ß upregulation. The heightened lung fibrosis remained on day 28 post-LPS. Moreover, intranasal delivered recombinant ISM1 (rISM1) effectively suppressed LPS-induced acute lung inflammation and ALI, and rISM1 suppressed LPS-induced NF-κB activation in cultured mouse alveolar macrophages. CONCLUSION: Together with our previous report, this work further established ISM1 as an endogenous anti-inflammation protein in the lung, restraining excessive host inflammatory response to LPS-triggered ALI and suppressing post-ALI lung fibrosis likely through suppressing NF-κB activation and pro-inflammatory cytokine/chemokine production.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Camundongos , NF-kappa B/metabolismo , Pneumonia/metabolismo , Fibrose Pulmonar/metabolismo
13.
Gynecol Minim Invasive Ther ; 11(1): 1-6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310114

RESUMO

High-intensity focused ultrasound (HIFU) surgery is a noninvasive thermal ablation treatment modality, and its clinical application is increasingly introduced into gynecological practices in China and Asia. To further strengthen the technology's standardized management, the Asia-Pacific Association for Gynecologic Endoscopy and Minimally Invasive Therapy (APAGE) collected the consensus of well-known experts in the field. They shared opinions on the management standards of the basic requirements for developing this HIFU technology in medical institutions, operators' training requirements, technical management, HIFU training program, etc., Based on the recommendations from APAGE, Hong Kong Focused Ultrasound Surgery Association developed its proposed HIFU training program for gynecologists in Hong Kong. This paper will present the training requirements and hopefully share its training and credentialing rationales with other HIFU medical institutes.

14.
Pharmacol Ther ; 235: 108153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35121002

RESUMO

Chronic inflammatory diseases (CIDs) afflict millions worldwide and remain incurable. The mitogen-activated protein kinase (MAPK) p38α is a critical node in the intricate acute inflammatory response. It induces the production of various pro-inflammatory mediators, primarily via the MAPK-activated protein kinase 2 (MK2). This, coupled with its sustained activation in CIDs, has led to the assumption that dysregulated pro-inflammatory p38α-dependent pathways are central drivers of chronic inflammation. Inhibiting the p38α cascade thus seems a logical therapeutic strategy, leading to significant efforts towards developing p38α- and MK2-specific inhibitors. However, recent studies raise the possibility that the effects of chronic p38α activation in CIDs have been misinterpreted. In cell cultures and murine models, constitutive p38α activity causes dramatic downregulation, rather than activation, of downstream elements such as MK2, via the ubiquitin-proteasome system, and phospho-Hsp27. Perhaps, sustained p38α activity promotes CIDs by inducing degradation of essential components of the p38α pathway. If this notion is genuine, then the current pharmacological strategy, focused on the inhibition of these components, is counter-productive and may explain why no p38α or MK2 inhibitor has made it to the clinic. It could be that an appropriate strategy should involve restoring or inducing certain p38α targets instead.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Animais , Regulação para Baixo , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046017

RESUMO

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/fisiologia , Feminino , Homeostase , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Nicotiana/efeitos adversos
16.
Gynecol Minim Invasive Ther ; 11(4): 193-197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660326

RESUMO

The COVID-19 pandemic prevented doctors from attending surgical meetings or conferences where they learned surgical skills from others and shared surgical experiences. It also resulted in the rapid use of webinars in obstetrics and gynecology meetings. While webinars or virtual meetings enable distance learning and replace face-to-face meetings using various teleconferencing software programs, many attendees are not satisfied and find it difficult to learn surgical techniques using commercially available telecommunication programs. Therefore, dedicated webinars are necessary to present emerging surgical technologies, satisfy the attendees, and achieve a successful outcome. This article reviews the existing telecommunication programs, new presentation technologies, and proposed webinars developments to improve its delivery of surgical techniques and training during the COVID-19 pandemic and in the future.

17.
Korean J Intern Med ; 36(6): 1305-1319, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34634855

RESUMO

Approximately 25% to 40% of patients with chronic obstructive pulmonary disease (COPD) have the eosinophilic endotype. It is important to identify this group accurately because they are more symptomatic and are at increased risk for exacerbations and accelerated decline in forced expiratory volume in the 1st second. Importantly, this endotype is a marker of treat ment responsiveness to inhaled corticosteroid (ICS), resulting in decreased mortality risk. In this review, we highlight differences in the biology of eosinophils in COPD compared to asthma and the different definitions of the COPD eosinophilic endotype based on sputum and blood eosinophil count (BEC) with the corresponding limitations. Although BEC is useful as a biomarker for eosinophilic COPD endotype, optimal BEC cut-offs can be combined with clinical characteristics to improve its sensitivity and specificity. A targeted approach comprising airway eosinophilia and appropriate clinical and physiological features may improve identification of subgroups of patients who would benefit from biologic therapy or early use of ICS for disease modification.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Corticosteroides/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Eosinófilos , Volume Expiratório Forçado , Humanos , Contagem de Leucócitos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Escarro
18.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811139

RESUMO

One third of the western population suffers from nonalcoholic fatty liver disease (NAFLD), which may ultimately develop into hepatocellular carcinoma (HCC). The molecular event(s) that triggers the disease are not clear. Current understanding, known as the multiple hits model, suggests that NAFLD is a result of diverse events at several tissues (e.g., liver, adipose tissues, and intestine) combined with changes in metabolism and microbiome. In contrast to this prevailing concept, we report that fatty liver could be triggered by a single mutated protein expressed only in the liver. We established a transgenic system that allows temporally controlled activation of the MAP kinase p38α in a tissue-specific manner by induced expression of intrinsically active p38α allele. Here we checked the effect of exclusive activation in the liver. Unexpectedly, induction of p38α alone was sufficient to cause macrovesicular fatty liver. Animals did not become overweight, showing that fatty liver can be imposed solely by a genetic modification in liver per se and can be separated from obesity. Active p38α-induced fatty liver is associated with up-regulation of MUC13, CIDEA, PPARγ, ATF3, and c-jun mRNAs, which are up-regulated in human HCC. Shutting off expression of the p38α mutant resulted in reversal of symptoms. The findings suggest that p38α plays a direct causative role in fatty liver diseases and perhaps in other chronic inflammatory diseases. As p38α activity was induced by point mutations, it could be considered a proto-inflammatory gene (proto-inflammagene).


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Mutação com Ganho de Função , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
FEBS J ; 288(13): 3978-3999, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410203

RESUMO

The MAP kinase p38α is associated with numerous processes in eukaryotes, and its elevated activity is a prominent feature of inflammatory diseases, allergies, and aging. Since p38α is a nodal component of a complex signaling network, it is difficult to reveal exactly how p38α contributes to disparate outcomes. Identification of p38α -specific effects requires activation of p38α per se in vivo. We generated a transgenic mouse model that meets this requirement by allowing inducible and reversible expression of an intrinsically active p38α molecule (p38αD176A+F327S ). p38α's activation across all murine tissues resulted in a significant loss of body weight and death of about 40% of the mice within 17 weeks of activation, although most tissues were unaffected. Flow cytometric analysis of the lungs and bronchoalveolar lavage fluid detected an accumulation of 'debris' within the airways, suggesting impaired clearance. It also revealed increased numbers of alternatively activated alveolar macrophages and myeloid-derived suppressor cells within the lung, pointing at suppression and resolution of inflammation. Blood count suggested that mice expressing p38αD176A+F327S suffer from hemolytic anemia. Flow cytometry of bone marrow revealed a reduced number of hematopoietic stem cells and abnormalities in the erythroid lineage. Unexpectedly, p38α's substrate MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2 was downregulated in mice expressing p38αD176A+F327S , suggesting that constitutive activity of p38α may impose pathological phenotypes by downregulating downstream components, perhaps via a feedback inhibition mechanism. In summary, this new mouse model shows that induced p38α activity per se is hazardous to mouse vitality and welfare, although pathological parameters are apparent only in blood count, bone marrow, and lungs.


Assuntos
Anemia/genética , Regulação Enzimológica da Expressão Gênica , Macrófagos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Mutação , Células Supressoras Mieloides/metabolismo , Anemia/enzimologia , Animais , Peso Corporal/genética , Citocinas/sangue , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/classificação , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células Supressoras Mieloides/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...