Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083703

RESUMO

Resting-state functional connectivity is a promising tool for understanding and characterizing brain network architecture. However, obtaining uninterrupted long recording of resting-state data is challenging in many clinically relevant populations. Moreover, the interpretation of connectivity results may heavily depend on the data length and functional connectivity measure used. We compared the performance of three frequency-domain connectivity measures: magnitude-squared, wavelet and multitaper coherence; and the effect of data length ranging from 3 to 9 minutes. Performance was characterized by distinguishing two groups of channel pairs with known different connectivity strengths. While all methods considered improved the ability to distinguish the two groups with increasing data lengths, wavelet coherence performed best for the shortest time window of 3 minutes. Knowledge of which measure is more reliably used when shorter fNIRS recordings are available could make the utility of functional connectivity biomarkers more feasible in clinical populations of interest.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Análise Espectral
2.
J Neural Eng ; 20(3)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267940

RESUMO

Objective.Blindness affects approximately 40 million people worldwide and has inspired the development of cortical visual prostheses for restoring sight. Cortical visual prostheses electrically stimulate neurons of the visual cortex to artificially evoke visual percepts. Of the 6 layers of the visual cortex, layer 4 contains neurons that are likely to evoke a visual percept. Intracortical prostheses therefore aim to target layer 4; however, this can be difficult due to cortical curvature, inter-subject cortical variability, blindness-induced anatomical changes in cortex, and electrode placement variations. We investigated the feasibility of using current steering to stimulate specific cortical layers between electrodes in the laminar column.Approach.We explored whether the multiunit neural activity peak can be manipulated between two simultaneously stimulating electrodes in different layers of the cortical column. A 64-channel, 4-shank electrode array was implanted into the visual cortex of Sprague-Dawley rats (n= 7) orthogonal to the cortical surface. A remote return electrode was positioned over the frontal cortex in the same hemisphere. Charge was supplied to two stimulating electrodes along a single shank. Differing ratios of charge (100:0, 75:25, 50:50) and separation distances (300-500µm) were tested.Results.Current steering across the cortical layers did not result in a consistent shift of the neural activity peak. Both single-electrode and dual-electrode stimulation induced activity throughout the cortical column. This contrasts observations that current steering evoked a controllable peak of neural activity between electrodes implanted at similar cortical depths. However, dual-electrode stimulation across the layers did reduce the stimulation threshold at each site compared to single-electrode stimulation.Significance.Multi-electrode stimulation is not suitable for targeted activation of layers using current steering. However, it can be used to reduce activation thresholds at adjacent electrodes within a given cortical layer. This may be applied to reduce the stimulation side effects of neural prostheses, such as seizures.


Assuntos
Próteses Visuais , Ratos , Animais , Eletrodos Implantados , Estimulação Elétrica/métodos , Ratos Sprague-Dawley , Potenciais Evocados Visuais
3.
Neuron ; 111(12): 1979-1992.e7, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37044088

RESUMO

In the reach and saccade regions of the posterior parietal cortex (PPC), multiregional communication depends on the timing of neuronal activity with respect to beta-frequency (10-30 Hz) local field potential (LFP) activity, termed dual coherence. Neural coherence is believed to reflect neural excitability, whereby spiking tends to occur at a particular phase of LFP activity, but the mechanisms of multiregional dual coherence remain unknown. Here, we investigate dual coherence in the PPC of non-human primates performing eye-hand movements. We computationally model dual coherence in terms of multiregional neural excitability and show that one latent component, a multiregional mode, reflects shared excitability across distributed PPC populations. Analyzing the power in the multiregional mode with respect to different putative cell types reveals significant modulations with the spiking of putative pyramidal neurons and not inhibitory interneurons. These results suggest a specific role for pyramidal neurons in dual coherence supporting multiregional communication in PPC.


Assuntos
Neurônios , Lobo Parietal , Animais , Potenciais de Ação/fisiologia , Lobo Parietal/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
4.
J Neural Eng ; 20(1)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36763991

RESUMO

Objective.Hearing is an important sensory function that plays a key role in how children learn to speak and develop language skills. Although previous neuroimaging studies have established that much of brain network maturation happens in early childhood, our understanding of the developmental trajectory of language areas is still very limited. We hypothesized that typical development trajectory of language areas in early childhood could be established by analyzing the changes of functional connectivity in normal hearing infants at different ages using functional near-infrared spectroscopy.Approach.Resting-state data were recorded from two bilateral temporal and prefrontal regions associated with language processing by measuring the relative changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations. Connectivity was calculated using magnitude-squared coherence of channel pairs located in (a) inter-hemispheric homologous and (b) intra-hemispheric brain regions to assess connectivity between homologous regions across hemispheres and two regions of interest in the same hemisphere, respectively.Main results.A linear regression model fitted to the age vs coherence of inter-hemispheric homologous test group revealed a significant coefficient of determination for both HbO (R2= 0.216,p= 0.0169) and HbR (R2= 0.206,p= 0.0198). A significant coefficient of determination was also found for intra-hemispheric test group for HbO (R2= 0.237,p= 0.0117) but not for HbR (R2= 0.111,p= 0.0956).Significance.The findings from HbO data suggest that both inter-hemispheric homologous and intra-hemispheric connectivity between primary language regions significantly strengthen with age in the first year of life. Mapping out the developmental trajectory of primary language areas of normal hearing infants as measured by functional connectivity could potentially allow us to better understand the altered connectivity and its effects on language delays in infants with hearing impairments.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Criança , Humanos , Lactente , Pré-Escolar , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Idioma , Hemoglobinas , Imageamento por Ressonância Magnética
5.
J Neural Eng ; 19(3)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35688125

RESUMO

Objective.Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage. Hence, new stimulation methods are needed that can improve the resolution of artificial vision without increasing the number of electrodes. We investigated whether a technique known as current steering can improve the resolution of artificial vision provided by intracortical prostheses without increasing the number of physical electrodes in the brain.Approach.We explored how the locus of neuronal activation could be steered when low amplitude microstimulation was applied simultaneously to two intracortical electrodes. A 64-channel, four-shank electrode array was implanted into the visual cortex of rats (n= 7). The distribution of charge ranged from single-electrode stimulation (100%:0%) to an equal distribution between the two electrodes (50%:50%), thereby steering the current between the physical electrodes. The stimulating electrode separation varied between 300 and 500µm. The peak of the evoked activity was defined as the 'virtual electrode' location.Main results.Current steering systematically shifted the virtual electrode on average between the stimulating electrodes as the distribution of charge was moved from one stimulating electrode to another. This effect was unclear in single trials due to the limited sampling of neurons. A model that scales the cortical response to each physical electrode when stimulated in isolation predicts the evoked virtual electrode response. Virtual electrodes were found to elicit a neural response as effectively and predictably as physical electrodes within cortical tissue on average.Significance.Current steering could be used to increase the resolution of intracortical electrode arrays without altering the number of physical electrodes which will reduce neural tissue damage, power consumption and potential heat dispersion issues.


Assuntos
Córtex Visual , Próteses Visuais , Animais , Estimulação Elétrica/métodos , Eletrodos Implantados , Potenciais Evocados Visuais , Humanos , Ratos , Córtex Visual/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35533168

RESUMO

Brain-Machine Interfaces (BMI) offer the potential to modulate dysfunctional neurological networks by electrically stimulating the cerebral cortex via chronically-implanted microelectrodes. Wireless transmitters worn by BMI recipients must operate within electromagnetic emission and tissue heating limits, such as those prescribed by the IEEE and International Commission on Non-Ionizing Radiation Protection (ICNIRP), to ensure that radiofrequency emissions of BMI systems are safe. Here, we describe an approach to generating pre-compliance safety data by simulating the Specific Absorption Rate (SAR) and tissue heating of a multi-layered human head model containing a system of wireless, modular BMIs powered and controlled by an externally worn telemetry unit. We explore a number of system configurations such that our approach can be utilized for similar BMI systems, and our results provide a benchmark for the electromagnetic emissions of similar telemetry units. Our results show that the volume-averaged SAR per 10g of tissue exposed to our telemetry field complies with ICNIRP and IEEE reference levels, and that the maximum temperature increase in tissues was within permissible limits. These results were unaffected by the number of implants in the system model, and therefore we conclude that the electromagnetic emissions our BMI in any configuration are safe.


Assuntos
Interfaces Cérebro-Computador , Proteção Radiológica , Campos Eletromagnéticos/efeitos adversos , Humanos , Proteção Radiológica/métodos , Ondas de Rádio/efeitos adversos
7.
Neurophotonics ; 9(1): 015001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35071689

RESUMO

Significance: Functional near-infrared spectroscopy (fNIRS) is a neuroimaging tool that can measure resting-state functional connectivity; however, non-neuronal components present in fNIRS signals introduce false discoveries in connectivity, which can impact interpretation of functional networks. Aim: We investigated the effect of short channel correction on resting-state connectivity by removing non-neuronal signals from fNIRS long channel data. We hypothesized that false discoveries in connectivity can be reduced, hence improving the discriminability of functional networks of known, different connectivity strengths. Approach: A principal component analysis-based short channel correction technique was applied to resting-state data of 10 healthy adult subjects. Connectivity was analyzed using magnitude-squared coherence of channel pairs in connectivity groups of homologous and control brain regions, which are known to differ in connectivity. Results: By removing non-neuronal components using short channel correction, significant reduction of coherence was observed for oxy-hemoglobin concentration changes in frequency bands associated with resting-state connectivity that overlap with the Mayer wave frequencies. The results showed that short channel correction reduced spurious correlations in connectivity measures and improved the discriminability between homologous and control groups. Conclusions: Resting-state functional connectivity analysis with short channel correction performs better than without correction in its ability to distinguish functional networks with distinct connectivity characteristics.

8.
Brain Struct Funct ; 227(4): 1523-1543, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34773502

RESUMO

Neural implants have the potential to restore visual capabilities in blind individuals by electrically stimulating the neurons of the visual system. This stimulation can produce visual percepts known as phosphenes. The ideal location of electrical stimulation for achieving vision restoration is widely debated and dependent on the physiological properties of the targeted tissue. Here, the neurophysiology of several potential target structures within the visual system will be explored regarding their benefits and downfalls in producing phosphenes. These regions will include the lateral geniculate nucleus, primary visual cortex, visual area 2, visual area 3, visual area 4 and the middle temporal area. Based on the existing engineering limitations of neural prostheses, we anticipate that electrical stimulation of any singular brain region will be incapable of achieving high-resolution naturalistic perception including color, texture, shape and motion. As improvements in visual acuity facilitate improvements in quality of life, emulating naturalistic vision should be one of the ultimate goals of visual prostheses. To achieve this goal, we propose that multiple brain areas will need to be targeted in unison enabling different aspects of vision to be recreated.


Assuntos
Córtex Visual , Próteses Visuais , Estimulação Elétrica , Humanos , Fosfenos , Qualidade de Vida , Visão Ocular , Córtex Visual/fisiologia , Percepção Visual/fisiologia
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5686-5689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892412

RESUMO

AIM: Brain-Computer Interfaces (BCIs) hold promise to provide people with partial or complete paralysis, the ability to control assistive technology. This study reports offline classification of imagined and executed movements of the upper and lower limb in one participant with multiple sclerosis and people with no limb function deficits. METHODS: We collected neural signals using electroencephalography (EEG) while participants performed executed and imagined motor tasks as directed by prompts shown on a screen. RESULTS: Participants with no limb function attained >70% decoding accuracy on their best-imagined task compared to rest and on at-least one task comparison. The participant with multiple sclerosis also achieved accuracies within the range of participants with no limb function loss.Clinical Relevance - While only one case study is provided it was promising that the participant with MS was able to achieve comparable classification to that of the seven healthy controls. Further studies are needed to assess whether people suffering from MS may be able to use a BCI to improve their quality of life.


Assuntos
Interfaces Cérebro-Computador , Esclerose Múltipla , Eletroencefalografia , Estudos de Viabilidade , Humanos , Qualidade de Vida
10.
Neuropharmacology ; 198: 108755, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416268

RESUMO

Excitatory and inhibitory neurotransmission within the spinal dorsal horn is tightly controlled to regulate transmission of nociceptive signals to the brain. One aspect of this control is modulation of neuronal activity through cholinergic signaling. Nociceptive neurons in the dorsal horn express both nicotinic and muscarinic cholinergic receptors and activation of these receptors reduces pain in humans, while inhibition leads to nociceptive hypersensitivity. At a cellular level, acetylcholine (ACh) has diverse effects on excitability which is dependent on the receptor and neuronal subtypes involved. In the present study we sought to characterize the electrophysiological responses of specific subsets of lamina II interneurons from rat and marmoset spinal cord. Neurons were grouped by morphology and by action potential firing properties. Whole-cell voltage-clamp recordings from lamina II dorsal horn neurons of adult rats showed that bath applied acetylcholine increased, decreased or had no effect on spontaneous synaptic current activity in a cell-type specific manner. ACh modulated inhibitory synaptic activity in 80% of neurons, whereas excitatory synaptic activity was affected in less than 50% of neurons. In whole-cell current clamp recordings, brief somatic application of ACh induced cell-type specific responses in 79% of rat lamina II neurons, which included: depolarization and action potential firing, subthreshold membrane depolarization, biphasic responses characterized by transient depolarization followed by hyperpolarization and membrane hyperpolarization alone. Similar responses were seen in marmoset lamina II neurons and the properties of each neuron group were consistent across species. ACh-induced hyperpolarization was blocked by the muscarinic antagonist atropine and all forms of acetylcholine-induced depolarization were blocked by the nicotinic antagonist mecamylamine. The cholinergic system plays an important role in regulating nociception and this study contributes to our understanding of how circuit activity is controlled by ACh at a cellular level in primate and rodent spinal cord.


Assuntos
Acetilcolina/farmacologia , Rede Nervosa/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Atropina/farmacologia , Callithrix , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Mecamilamina/farmacologia , Camundongos , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Nociceptividade/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
11.
Brain Stimul ; 14(4): 741-750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975054

RESUMO

BACKGROUND: Cortical visual prostheses often use penetrating electrode arrays to deliver microstimulation to the visual cortex. To optimize electrode placement within the cortex, the neural responses to microstimulation at different cortical depths must first be understood. OBJECTIVE: We investigated how the neural responses evoked by microstimulation in cortex varied with cortical depth, of both stimulation and response. METHODS: A 32-channel single shank electrode array was inserted into the primary visual cortex of anaesthetized rats, such that it spanned all cortical layers. Microstimulation with currents up to 14 µA (single biphasic pulse, 200 µs per phase) was applied at depths spanning 1600 µm, while simultaneously recording neural activity on all channels within a response window 2.25-11 ms. RESULTS: Stimulation elicited elevated neuronal firing rates at all depths of cortex. Compared to deep sites, superficial stimulation sites responded with higher firing rates at a given current and had lower thresholds. The laminar spread of evoked activity across cortical depth depended on stimulation depth, in line with anatomical models. CONCLUSION: Stimulation in the superficial layers of visual cortex evokes local neural activity with the lowest thresholds, and stimulation in the deep layers evoked the most activity across the cortical column. In conjunction with perceptual reports, these data suggest that the optimal electrode placement for cortical microstimulation prostheses has electrodes positioned in layers 2/3, and at the top of layer 5.


Assuntos
Córtex Visual , Animais , Estimulação Elétrica , Potenciais Evocados Visuais , Neurônios , Ratos
12.
J Neural Eng ; 18(4)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34010826

RESUMO

Objective. Stimulus-elicited changes in electroencephalography (EEG) recordings can be represented using Fourier magnitude and phase features (Makeiget al(2004Trends Cogn. Sci.8204-10)). The present study aimed to quantify how much information about hearing responses are contained in the magnitude, quantified by event-related spectral perturbations (ERSPs); and the phase, quantified by inter-trial coherence (ITC). By testing if one feature contained more information and whether this information was mutually exclusive to the features, we aimed to relate specific EEG magnitude and phase features to hearing perception.Approach.EEG responses were recorded from 20 adults who were presented with acoustic stimuli, and 20 adult cochlear implant users with electrical stimuli. Both groups were presented with short, 50 ms stimuli at varying intensity levels relative to their hearing thresholds. Extracted ERSP and ITC features were inputs for a linear discriminant analysis classifier (Wonget al(2016J. Neural. Eng.13036003)). The classifier then predicted whether the EEG signal contained information about the sound stimuli based on the input features. Classifier decoding accuracy was quantified with the mutual information measure (Cottaris and Elfar (2009J. Neural. Eng.6026007), Hawelleket al(2016Proc. Natl Acad. Sci.11313492-7)), and compared across the two feature sets, and to when both feature sets were combined.Main results. We found that classifiers using either ITC or ERSP feature sets were both able to decode hearing perception, but ITC-feature classifiers were able to decode responses to a lower but still audible stimulation intensity, making ITC more useful than ERSP for hearing threshold estimation. We also found that combining the information from both feature sets did not improve decoding significantly, implying that ERSP brain dynamics has a limited contribution to the EEG response, possibly due to the stimuli used in this study.Significance.We successfully related hearing perception to an EEG measure, which does not require behavioral feedback from the listener; an objective measure is important in both neuroscience research and clinical audiology.


Assuntos
Implantes Cocleares , Potenciais Evocados Auditivos , Estimulação Acústica , Acústica , Limiar Auditivo , Eletroencefalografia , Audição
13.
Nat Commun ; 12(1): 607, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504797

RESUMO

Motor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored. We learn novel multiscale dynamical models for spike-LFP network activity in monkeys performing naturalistic reach-and-grasps. We show low-dimensional dynamics of spiking and LFP activity exhibited several principal modes, each with a unique decay-frequency characteristic. One principal mode dominantly predicted movements. Despite distinct principal modes existing at the two scales, this predictive mode was multiscale and shared between scales, and was shared across sessions and monkeys, yet did not simply replicate behavioral modes. Further, this multiscale mode's decay-frequency explained behavior. We propose that multiscale, low-dimensional motor cortical state dynamics reflect the neural control of naturalistic reach-and-grasp behaviors.


Assuntos
Comportamento Animal/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiologia , Potenciais de Ação/fisiologia , Animais , Macaca mulatta , Modelos Neurológicos , Análise e Desempenho de Tarefas
14.
Nat Neurosci ; 24(1): 140-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169030

RESUMO

Neural activity exhibits complex dynamics related to various brain functions, internal states and behaviors. Understanding how neural dynamics explain specific measured behaviors requires dissociating behaviorally relevant and irrelevant dynamics, which is not achieved with current neural dynamic models as they are learned without considering behavior. We develop preferential subspace identification (PSID), which is an algorithm that models neural activity while dissociating and prioritizing its behaviorally relevant dynamics. Modeling data in two monkeys performing three-dimensional reach and grasp tasks, PSID revealed that the behaviorally relevant dynamics are significantly lower-dimensional than otherwise implied. Moreover, PSID discovered distinct rotational dynamics that were more predictive of behavior. Furthermore, PSID more accurately learned behaviorally relevant dynamics for each joint and recording channel. Finally, modeling data in two monkeys performing saccades demonstrated the generalization of PSID across behaviors, brain regions and neural signal types. PSID provides a general new tool to reveal behaviorally relevant neural dynamics that can otherwise go unnoticed.


Assuntos
Comportamento Animal/fisiologia , Modelos Neurológicos , Percepção Espacial/fisiologia , Algoritmos , Animais , Fenômenos Eletrofisiológicos , Força da Mão/fisiologia , Aprendizagem/fisiologia , Macaca mulatta , Aprendizado de Máquina , Córtex Motor/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Rotação , Movimentos Sacádicos/fisiologia
15.
J Neurointerv Surg ; 13(2): 102-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33115813

RESUMO

BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.


Assuntos
Atividades Cotidianas , Interfaces Cérebro-Computador , Neuroestimuladores Implantáveis , Córtex Motor/fisiologia , Paralisia/terapia , Índice de Gravidade de Doença , Atividades Cotidianas/psicologia , Idoso , Interfaces Cérebro-Computador/psicologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Paralisia/diagnóstico por imagem , Paralisia/fisiopatologia , Estudos Prospectivos
16.
Front Behav Neurosci ; 14: 77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581737

RESUMO

There is evidence to suggest that motor execution and motor imagery both involve planning and execution of the same motor plan, however, in the latter the output is inhibited. Currently, little is known about the underlying neural mechanisms of motor output inhibition during motor imagery. Uncovering the distinctive characteristics of motor imagery may help us better understand how we abstract complex thoughts and acquire new motor skills. The current study aimed to dissociate the cognitive processes involved in two distinct inhibitory mechanisms of motor inhibition and motor imagery restraint. Eleven healthy participants engaged in an imagined GO/NO-GO task during a 7 Tesla fMRI experiment. Participants planned a specific type of motor imagery, then, imagined the movements during the GO condition and restrained from making a response during the NO-GO condition. The results revealed that specific sub-regions of the supplementary motor cortex (SMC) and the primary motor cortex (M1) were recruited during the imagination of specific movements and information flowed from the SMC to the M1. Such condition-specific recruitment was not observed when motor imagery was restrained. Instead, general recruitment of the posterior parietal cortex (PPC) was observed, while the BOLD activity in the SMC and the M1 decreased below the baseline at the same time. Information flowed from the PPC to the SMC, and recurrently between the M1 and the SMC, and the M1 and the PPC. These results suggest that motor imagery involves task-specific motor output inhibition partly imposed by the SMC to the M1, while the PPC globally inhibits motor plans before they are passed on for execution during the restraint of responses.

17.
J Neural Eng ; 17(4): 046001, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554869

RESUMO

OBJECTIVE: Cortical vision prostheses aim to restore visual percepts to those who have lost sight by delivering electrical stimulation to the visual cortex. These devices need to be implanted intracranially using subdural or intracortical microelectrodes, and should preferably dispense with the need of transcranial wiring. The risks of cortical tissue injury from mechanical trauma, material biocompatibility, heat generation, electrical stimulation and long-term immune responses need to be evaluated. In this paper, we investigate the biological response to a wireless cortical vision prosthesis (Gennaris array), by characterizing the histological changes that occur following chronic electrical stimulation. APPROACH: Ten arrays (7 active, 3 passive) were implanted in three sheep using a pneumatic insertor. Each device consisted of a wireless receiver and Application Specific Integrated Circuit encased in a ceramic box, and could deliver electrical stimulation through one of 43 electrodes. MAIN RESULTS: Stimulation was delivered through seven of these devices for up to 3 months and each device was treated as independent for further analysis. Cumulatively, over 2700 h of stimulation were achieved without any observable adverse health effects. Histology showed that the devices and implantation procedure were well tolerated by the brain with a similar tissue response to the more common Utah arrays. However, voltage transients across the stimulating electrodes were not measured so exact charge injection could not be verified. SIGNIFICANCE: This work represents one of the first long-term tests of a fully implantable cortical vision prosthesis. The results indicate that long-term stimulation through wireless arrays can be achieved without induction of widespread tissue damage.


Assuntos
Córtex Visual , Próteses Visuais , Animais , Estimulação Elétrica , Eletrodos Implantados , Microeletrodos , Implantação de Prótese , Ovinos
18.
J Neurosci ; 40(10): 2056-2068, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964718

RESUMO

Coherent neuronal dynamics play an important role in complex cognitive functions. Optogenetic stimulation promises to provide new ways to test the functional significance of coherent neural activity. However, the mechanisms by which optogenetic stimulation drives coherent dynamics remain unclear, especially in the nonhuman primate brain. Here, we perform computational modeling and experiments to study the mechanisms of optogenetic-stimulation-driven coherent neuronal dynamics in three male nonhuman primates. Neural responses arise from stimulation-evoked, temporally dynamic excitatory (E) and inhibitory (I) activity. Spiking activity is more likely to occur during E/I imbalances. Thus the relative difference in the driven E and I responses precisely controls spike timing by forming a brief time interval of increased spiking likelihood. Experimental results agree with parameter-dependent predictions from the computational models. These results demonstrate that optogenetic stimulation driven coherent neuronal dynamics are governed by the temporal properties of E/I activity. Transient imbalances in excitatory and inhibitory activity may provide a general mechanism for generating coherent neuronal dynamics without the need for an oscillatory generator.SIGNIFICANCE STATEMENT We examine how coherent neuronal dynamics arise from optogenetic stimulation in the primate brain. Using computational models and experiments, we demonstrate that coherent spiking and local field potential activity is generated by stimulation-evoked responses of excitatory and inhibitory activity in networks, extending the growing literature on neuronal dynamics. These responses create brief time intervals of increased spiking tendency and are consistent with previous observations in the literature that balanced excitation and inhibition controls spike timing, suggesting that optogenetic-stimulation-driven coherence may arise from intrinsic E/I balance. Most importantly, our results are obtained in nonhuman primates and thus will play a leading role in driving the use of causal manipulations with optogenetic tools to study higher cognitive functions in the primate brain.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Optogenética/métodos , Potenciais de Ação/fisiologia , Animais , Macaca , Masculino
19.
J Neural Eng ; 16(5): 056022, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31100751

RESUMO

OBJECTIVE: Behavior is encoded across multiple scales of brain activity, from binary neuronal spikes to continuous fields including local field potentials (LFP). Multiscale models need to describe both the encoding of behavior and the conditional dependencies in simultaneously recorded spike and field signals, which form a high-dimensional multiscale network. However, learning spike-field dependencies in high-dimensional recordings is challenging due to the prohibitively large number of spike-field signal pairs, which makes standard learning techniques subject to overfitting. APPROACH: We present a sparse model-based estimation algorithm to learn these multiscale network dependencies. We develop a multiscale encoding model consisting of a point process model of binary spikes for each neuron whose firing rate is a function of the LFP network features and behavioral states. Doing so, spike-field dependencies constitute the model parameters to be learned. We resolve the parameter learning challenge by forming a constrained optimization problem to maximize the likelihood with an L1 penalty term that eases the detection of significant spike-LFP dependencies. We then apply the Akaike information criterion (AIC) to force a sparse number of nonzero dependency parameters in the model. MAIN RESULTS: We validate the algorithm using simulations and spike-field data from two non-human primates (NHP) in a 3D motor task with motor cortical recordings and a pro-saccade visual task with prefrontal recordings. We find that by identifying a model with a sparse set of dependency parameters, the algorithm improves spike prediction compared with models without dependencies. Further, the algorithm identifies significantly fewer dependency parameters compared with standard methods while improving their spike prediction likely due to detecting fewer spurious dependencies. Also, spike prediction on any electrode improves by including LFP features from all electrodes compared with using only those on the same electrode. Finally, unlike standard methods, the algorithm uncovers patterns of spike-field network dependencies as a function of distance, brain region, and frequency band. SIGNIFICANCE: This algorithm can help study functional dependencies in high-dimensional spike-field networks and leads to more accurate multiscale encoding models.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Macaca mulatta , Estimulação Luminosa
20.
Front Neural Circuits ; 13: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914925

RESUMO

The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.


Assuntos
Atividade Motora/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Movimentos Oculares/fisiologia , Humanos , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...