Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700308

RESUMO

This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Água
2.
ACS Appl Mater Interfaces ; 13(36): 43795-43805, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464077

RESUMO

Due to their low-temperature deposition, high mobility (>10 cm2/V·s), and electrical conductivity, amorphous ionic oxide semiconductors (AIOSs) have received much attention for their applications in flexible and/or organic electro-optical devices. Here, we report on a study of the flexibility of CdO-In2O3 alloy thin films, deposited on a polyethylene terephthalate (PET) substrate by radio frequency magnetron sputtering at room temperature. Cd1-xInxO1+δ alloys with the composition of x > 0.6 are amorphous, exhibiting a high electron mobility of 40-50 cm2/V·s, a low resistivity of ∼3 × 10-4 Ω·cm, and high transmittance over a wide spectral window of 350 to >1600 nm. The flexibility of both crystalline and amorphous Cd1-xInxO1+δ films on the PET substrate was investigated by measuring their electrical resistivity after both compressive and tensile bending with a range of bending radii and repeated bending cycles. Under both compressive and tensile bending with Rb = 16.5 mm, no significant degradation was observed for both the crystalline and amorphous films up to 300 bending cycles. For a smaller bending radius, the amorphous film shows much less electrical degradation than the crystalline films under compressive bending due to less film delamination at the bending sites. On the other hand, for a small bending radius (<16 mm), both crystalline and amorphous films degrade after repeated tensile bending, most likely due to the development of microcracks in the films. To demonstrate the application of amorphous Cd1-xInxO1+δ alloy in photovoltaics, we fabricated perovskite and bulk-heterojunction organic solar cells (OSCs) on glass and flexible PET utilizing amorphous Cd1-xInxO1+δ layers as transparent electrodes. The organic-inorganic hybrid perovskite solar cells (PSCs) exhibit a power conversion efficiency (PCE) of ∼11 to 12% under both front and back illumination, demonstrating good bifacial performance with bifaciality factor >90%. The OSCs fabricated on an amorphous Cd1-xInxO1+δ-coated flexible PET substrate achieve a promising PCE of 12.06%. Our results strongly suggest the technological potentials of amorphous Cd1-xInxO1+δ as a reliable and effective transparent conducting material for flexible and organic optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA