Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Cell Death Differ ; 15(8): 1197-210, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18437165

RESUMO

Apoptosis is an important physiological process that promotes tissue homeostasis by eliminating unnecessary or malfunctioning cells. Abnormality in this process contributes to tumorigenesis, as well as the resistance to cancer treatment by radiation and chemotherapy. Restoration of normal apoptosis would not only promote cancer cell death and halt tumor progression, but also increase the response to many current cancer therapies. Although apoptosis induction is an important principle of currently used radiation and chemotherapy treatment, uncovering the mechanisms that govern this process, and which are lost during transformation, represents an important direction for realizing improved therapies for the future. This article first briefly reviews aspects of current discovery strategies for new anticancer therapeutics based on intervening in cell death pathways, and then discusses in more detail several cancer-relevant death pathways, which are disabled during transformation and which can be targeted therapeutically. These include anoikis/cell adhesion; energy metabolism and the unfolded protein response. Finally, we introduce a new concept, which utilizes cancer-specific apoptosis induced by oncolytic viruses. The discussion of these topics involves novel targets, compounds and virotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose , Transformação Celular Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Anoikis/efeitos dos fármacos , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Adesão Celular , Hipóxia Celular , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Viral Oncolítica , Dobramento de Proteína
2.
Histol Histopathol ; 22(2): 211-7, 2007 02.
Artigo em Inglês | MEDLINE | ID: mdl-17149694

RESUMO

RNAi-mediated gene inactivation has become a cornerstone of the present day gene function studies that are the foundation of mechanism and target based drug discovery and development, which could potentially shorten the otherwise long process of drug development. In particular, the coming of age of "RNAi drug" could provide new promising therapeutics bypassing traditional approaches. However, there are technological hurdles need to overcome and the biological limitations need to consider for achieving effective therapeutics. Major hurdles include the intrinsic poor pharmacokinetic property of siRNA and major biological restrictions include off-target effects, interferon response and the interference with endogenous miRNA. Recent innovations in nucleic acid chemistry, formulations and delivery methods have gradually rendered it possible to develop effective RNAi-based therapeutics. Careful design based on the newest RNAi/miRNA biology can also help to minimize the potential tissue toxicity. If successful with systemic application, RNAi drug will no doubt revolutionize the whole drug development process. This review attempts to describe the progress in this area, including applications in preclinical models and recent favorable experience in a number of human trials of local diseases, along with the discussion on the potential limitations of RNAi therapeutics.


Assuntos
Inativação Gênica/efeitos dos fármacos , Terapia Genética , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos , Marcação de Genes , Humanos , RNA Interferente Pequeno/efeitos adversos
3.
Histol Histopathol ; 21(5): 533-40, 2006 05.
Artigo em Inglês | MEDLINE | ID: mdl-16493583

RESUMO

Three members of the NR4A1/Nur77/ NGFIB orphan nuclear hormone receptor subfamily (NR4A1, NR4A2, and NR4A3) belong to the steroid nuclear hormone receptor superfamily. They share similar structural features and have no known natural ligand. They constitute immediate early genes that are induced by serum, growth factors and receptor engagement and are thus implicated in cell mitogenic responses. These nuclear receptors are transcription factors that exert their functions through activation and subsequent induction of the downstream pathways. They have been shown to play a role in complex pathways of cell survival and apoptosis. Although the expression of these genes have been shown to be pro-survival, it has also been reported that NR4A1 expression can cause apoptosis. These two opposite effects apparently result from distinct mechanisms: either transcriptional activation of genes responsible for cell survival or cell apoptosis, or translocation into the cytoplasm where they target the mitochondria and cause cell apoptosis via Bcl-2 binding. The latter mechanism constitutes a new paradigm of cellular apoptosis. In vitro functional studies using over-expression (gain of function) or gene inactivation (loss of function) type assays, combined with transgenic or knockout animal data in vivo, have revealed these effects and their physiological roles, including thymocyte development for NR4A1/3 and pro-survival in CNS for NR4A2. Recent studies have also suggested an important role of these receptors in cell transformation and tumorigenicity via both their anti-apoptotic and pro-apoptotic functions. In particular, the recent identification of a functional ligand for NR4A1 suggests that these members could potentially serve as drug targets for disease indications such as cancer. While many aspects of these receptors have been previously reviewed, this article focuses on new experimentation and discovery of their apoptotic and carcinogenic roles, and discusses their potential roles as therapeutic targets.


Assuntos
Apoptose , Transformação Celular Neoplásica , Proteínas de Ligação a DNA/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sobrevivência Celular , Neoplasias do Colo/química , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/fisiopatologia , Neoplasias da Próstata/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/análise , Receptores de Esteroides/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/fisiopatologia
4.
J Med Virol ; 70(2): 183-6, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12696103

RESUMO

Dendritic cells hold promise as adjuvant for immunotherapy for cancer and infectious diseases. We demonstrate that a significant number of cryopreserved peripheral blood CD34(+) cells from HIV-infected subjects can be transduced with a replication-incompetent lentiviral vector expressing HIV antigens. In addition, untransduced and transduced CD34(+) cells from HIV-infected individuals were able to differentiate into dendritic cells with strong T-cell stimulatory capacity. Thus, cryopreserved CD34(+) cells from HIV-infected subjects may prove useful for immunotherapy for HIV/AIDS.


Assuntos
Antígenos CD34/metabolismo , Células Dendríticas/citologia , Vetores Genéticos , Antígenos HIV/genética , Lentivirus/genética , Transdução Genética , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/virologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Células-Tronco Hematopoéticas/virologia , Humanos
5.
Biotechniques ; 32(6): 1266-8, 1270, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12074156

RESUMO

A fast and efficient site-directed mutagenesis method has been developed, using the newly constructed plasmid pTPS19, which expresses the toxic CcdB protein originally encoded by the E. coli F plasmid. Once the target gene is cloned into pTPS19, desired mutations can be introduced with two primers. The first contains the desired mutation, and the second is designed to create a +1 frame shift in the ccdB gene to inactivate the CcdB protein. The mutants can be directly selected on LB plates containing IPTG, through which the toxic CcdB protein is induced, thereby eliminating cells carrying wild-type parental plasmids. Based on stringent selection through the toxic CcdB protein, mutagenesis efficiency of 90%-100% was reached even after one round of transformation.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Mutagênese Sítio-Dirigida , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Linhagem Celular , Proteínas de Ligação a DNA , Proteína gp160 do Envelope de HIV/genética , Humanos , Plasmídeos , Proteínas de Ligação a RNA/genética
6.
Mol Cell Biol ; 21(24): 8357-64, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713272

RESUMO

Ribozymes are small catalytic RNA molecules that can be engineered to enzymatically cleave RNA transcripts in a sequence-specific fashion and thereby inhibit expression and function of the corresponding gene product. With their simple structures and site-specific cleavage activity, they have been exploited as potential therapeutic agents in a variety of human disorders, including hepatitis C virus (HCV) infection. We have designed a hairpin ribozyme (Rz3'X) targeting the HCV minus-strand replication intermediate at position 40 within the 3'X tail. Surprisingly, Rz3'X was found to induce ganciclovir (GCV)-resistant colonies in a bicistronic cellular reporter system with HCV internal ribosome entry site (IRES)-dependent translation of herpes simplex virus thymidine kinase (TK). Rz3'X-transduced GCV-resistant HeLa reporter cells showed substantially reduced IRES-mediated HCV core protein translation compared with control vector-transduced cells. Since these reporter systems do not contain the HCV 3'X tail sequences, the results indicate that Rz3'X probably exerted an inhibitory effect on HCV IRES activity fortuitously through another gene target. A novel technique of ribozyme cleavage-based target gene identification (cleavage-specific amplification of cDNA ends) (M. Krüger, C. Beger, P. J. Welch, J. R. Barber, and F. Wong-Staal, Nucleic Acids Res. 29:e94, 2001) revealed that human 20S proteasome alpha-subunit PSMA7 mRNA was a target RNA recognized and cleaved by Rz3'X. We then showed that additional ribozymes directed against PSMA7 RNA inhibited HCV IRES activity in two assay systems: GCV resistance in the HeLa IRES TK reporter cell system and a transient transfection assay performed with a bicistronic Renilla-HCV IRES-firefly luciferase reporter in Huh7 cells. In contrast, ribozymes were inactive against IRES of encephalomyocarditis virus and human rhinovirus. Additionally, proteasome inhibitor MG132 exerted a dose-dependent inhibitory effect on HCV IRES-mediated translation but not on cap-dependent translation. These data suggest a principal role for PSMA7 in regulating HCV IRES activity, a function essential for HCV replication.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Hepacivirus/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas , Antivirais/farmacologia , Sítios de Ligação , Northern Blotting , Western Blotting , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Ganciclovir/farmacologia , Células HeLa , Humanos , Luciferases/metabolismo , Modelos Genéticos , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , RNA Catalítico/metabolismo , RNA Mensageiro/metabolismo , Retroviridae/genética , Timidina Quinase/metabolismo , Transdução Genética , Transfecção , Células Tumorais Cultivadas
8.
J Biol Chem ; 276(51): 47840-3, 2001 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-11602580

RESUMO

Recent findings show that human immunodeficiency virus (HIV)-1 protease inhibitors designed to specifically inhibit the aspartic protease of HIV-1 nonetheless exert various effects on immune cell function in vitro and in vivo. Dendritic cells (DC), central players of the immune system, express several aspartic proteases that are important for DC function. In the present study, we demonstrate that all of the HIV-1 protease inhibitors tested affect DC maturation. In addition, saquinavir had a strong inhibitory effect on the T-cell stimulatory capacity of mature DC. In contrast, indinavir had only a slight effect on DC induced T-cell proliferation and allowed efficient transduction of DC with a replication-incompetent HIV-1 vector designed for DC-based immunotherapy. HIV-1 protease inhibitors that have little or no effect on DC function may be preferable for combination with immunotherapy for HIV/AIDS.


Assuntos
Células Dendríticas/efeitos dos fármacos , Inibidores da Protease de HIV/farmacologia , Indinavir/farmacologia , Divisão Celular/efeitos dos fármacos , Vírus Defeituosos/fisiologia , Células Dendríticas/imunologia , Vetores Genéticos , HIV-1/fisiologia , Humanos , Imunofenotipagem , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
Nucleic Acids Res ; 29(19): E94, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11574696

RESUMO

A hairpin ribozyme, RzCR2A, directed against position 323 of the hepatitis C virus 5'-untranslated region (HCV 5'-UTR) was used to establish and validate a novel method for the detection of cellular target molecules for hairpin ribozymes, termed C-SPACE (cleavage-specific amplification of cDNA ends). For C-SPACE, HeLa mRNA containing the transcript of interest was subjected to in vitro cleavage by RzCR2A in parallel with a control ribozyme, followed by reverse transcription using a modified SMART cDNA amplification method and cleavage-specific PCR analysis. C-SPACE allowed identification of the RzCR2A target transcript from a mixture containing the entire cellular mRNA while only requiring knowledge of the ribozyme binding sequence for amplification. In a similar approach, C-SPACE was used successfully to identify human 20S proteasome alpha-subunit PSMA7 mRNA as the cellular target RNA of Rz3'X, a ribozyme originally designed to cleave the negative strand HCV 3'-UTR. Rz3'X was found to substantially inhibit HCV internal ribosome entry site (IRES) activity and PSMA7 was subsequently confirmed to be involved in HCV IRES-mediated translation. Thereby, C-SPACE was validated as a powerful tool to rapidly identify unknown target RNAs recognized and cleaved by hairpin ribozymes.


Assuntos
Reação em Cadeia da Polimerase/métodos , RNA Catalítico/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , Cisteína Endopeptidases/genética , DNA Complementar , Genes , Células HeLa , Hepacivirus/genética , Humanos , Complexos Multienzimáticos/genética , Complexo de Endopeptidases do Proteassoma , RNA Viral/metabolismo , Células Tumorais Cultivadas
10.
Hum Gene Ther ; 12(9): 1013-9, 2001 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-11399224

RESUMO

Much progress has been made in developing new and more efficient treatments for human immunodeficiency virus (HIV) infection, the cause of acquired immunodeficiency syndrome (AIDS). However, the scope of the HIV epidemic and the limitations of existing treatments necessitate the continued development of novel treatment strategies. Gene therapy is one such forward-looking strategy. Gene therapy approaches for HIV infection include efforts to interfere with viral replication directly by engineering HIV-resistant cells or indirectly by eliminating infected cells from the body, primarily by eliciting a therapeutic immune response to destroy HIV-infected cells. Although the prospect of gene therapy as a routine treatment for HIV infection remains distant, continuous progress is being made, which should also have implications for gene therapy strategies for a variety of other diseases. This article reviews some of the strategies for investigating the feasibility of gene transfer for the treatment of HIV infection.


Assuntos
Terapia Genética/métodos , Infecções por HIV/terapia , Animais , Técnicas de Transferência de Genes , Infecções por HIV/virologia , HIV-1/genética , Humanos
11.
J Biol Chem ; 276(33): 30694-700, 2001 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-11402034

RESUMO

The complex retroviruses such as human immunodeficiency virus, type 1, employ a virally encoded protein, Rev, to mediate the nuclear export of unspliced and partially spliced mRNA. In contrast, the simian type D retroviruses act through a cis-acting constitutive transport element (CTE) that presumably interacts directly with cellular export proteins. We first reported that RNA helicase A (RHA) is a shuttle protein that binds to functional CTE in vitro and in vivo. Recently, we isolated a novel protein, HAP95, that specifically binds to the nuclear transport domain of RHA and up-regulates CTE-mediated gene expression. Here, using truncation and deletion mutations, we mapped the domains of HAP95 that are important for RHA binding, transactivation of CTE, and nuclear cytoplasmic shuttling. We report evidence for a novel nuclear export signal in HAP95 and showed that the domains involved in RHA binding and nuclear localization are required for CTE activation. Finally, we showed that HAP95 synergizes significantly with RHA on CTE-mediated reporter gene expression and promotes nuclear export of unspliced mRNA in transfected cells. Taken together, these data support the proposal that HAP95 specifically facilitates CTE-mediated gene expression by directly binding to RHA.


Assuntos
Transporte Ativo do Núcleo Celular , Betaretrovirus/metabolismo , Proteínas de Transporte/química , Proteínas de Ligação a DNA , Proteínas Nucleares/química , Sequência de Aminoácidos , Autoantígenos/metabolismo , Proteínas de Transporte/fisiologia , RNA Helicases DEAD-box , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas de Neoplasias , Proteínas Nucleares/fisiologia , RNA/metabolismo , RNA Helicases/metabolismo
12.
Proc Natl Acad Sci U S A ; 98(1): 130-5, 2001 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-11136250

RESUMO

Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an "inverse genomics" approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer.


Assuntos
Proteína BRCA1/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Biblioteca Gênica , Genômica/métodos , Proteínas/metabolismo , RNA Catalítico/genética , Fatores de Transcrição , Proteína BRCA1/biossíntese , Sequência de Bases , Divisão Celular , Tamanho Celular , Transformação Celular Neoplásica , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Vetores Genéticos/genética , Humanos , Proteínas Inibidoras de Diferenciação , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Proteínas/genética , RNA Catalítico/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Retroviridae/genética , Transdução Genética , Células Tumorais Cultivadas
13.
Somat Cell Mol Genet ; 26(1-6): 83-98, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12465463

RESUMO

Lentiviral vectors have received much attention in recent years due to their ability to efficiently transduce non-dividing cells. Of the lentiviruses HIV-2 and SIV offer several unique benefits as the basis for lentiviral vector design. HIV-1, HIV-2 and SIV remain the only known primate lentiviruses, and consequently are among the most extensively studied viruses known. Substantial effort has been devoted towards identifying the pathogenic determinants of the primate lentiviruses and towards understanding their replication within primates. Of the primate lentiviruses, the pathogenicity and rates of transmission of HIV-2 and SIV fall far below that of HIV-1, potentially providing vectors based upon HIV-2/SIV with a greater degree of biosafety. Last, and perhaps most importantly, HIV-2 and SIV are viruses which may be studied within non-human primate models susceptible to AIDS-like disease, making vectors based upon these viruses accessible to substantial preclinical evaluation. We approach this Chapter presenting information regarding the basic biology of HIV-2 and SIV and conclude by pointing to how unique features of HIV-2 and SIV are well suited to vector design, hoping to leave the reader with a greater appreciation of the potential these viruses offer within the field of gene transfer applications.


Assuntos
Vetores Genéticos/genética , HIV-2/genética , Vírus da Imunodeficiência Símia/genética , Animais , Regulação Viral da Expressão Gênica , Técnicas de Transferência de Genes , Genoma Viral , Humanos , Lentivirus/genética , Primatas
14.
Biomacromolecules ; 2(4): 1229-42, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11777397

RESUMO

Our recent analysis indicates that the cytoplasmic localization of tRNA-attached ribozymes (tRNA-Rz) is critical for its high-level intracellular activity, suggesting that mature mRNAs in the cytoplasm are more accessible to ribozymes than pre-mRNAs in the nucleus (Kato et al. J. Biol. Chem. 2001, 276, 15378-15385; Kuwabara et al. Nucleic Acids Res. 2001, 29, 2780-2788). Although studies in Xenopus oocytes led to the proposal that only correctly processed mature tRNAs are exported from nuclei in a RanGTP-dependent manner (Lund and Dahlberg Science 1998, 282, 2082-2085), our tRNA-Rz with an extended 3' end can also be exported to the cytoplasm in somatic cells. Xpo-t/RanGTP bound to tRNA-attached ribozymes in vitro and in somatic cells, with recognition basically resembling the recognition of mature tRNAs. In contrast, no binding to tRNA-attached ribozymes occurred in Xenopus oocytes. The injection of a nuclear extract of Xenopus oocytes together with tRNA-attached ribozymes inhibited the export of tRNA-attached ribozymes but not mature tRNAs in somatic cells, suggesting the existence of an inhibitor(s) of the Xpo-t-dependent export pathway. Moreover, the inhibitor(s) appears responsible for a proofreading mechanism that operates in oocytes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Catalítico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Sítios de Ligação , Transporte Biológico Ativo , Proteínas de Transporte/fisiologia , Citoplasma/metabolismo , Engenharia Genética/métodos , Células HeLa , Humanos , Dados de Sequência Molecular , Oócitos , Processamento de Terminações 3' de RNA/genética , Xenopus
15.
Virology ; 276(2): 271-8, 2000 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11040119

RESUMO

CCR-5 is a major cellular coreceptor for R5 strains of HIV-1. Individuals carrying a homozygous 32-base-pair deletion in this gene are apparently healthy and are relatively resistant to HIV-1 infection. Since CCR5 appears to be dispensable for the host, but important for initial HIV-1 infection, CCR5 mRNA is an excellent therapeutic target for inhibiting HIV-1 replication via ribozyme knockout. We report here that hairpin ribozymes are able to reduce cellular CCR5 mRNA and cell surface CCR5 when stably introduced into PM1 cells by transduction with recombinant adenoassociated viral vector. The ribozymes effectively protect the cells from infection by R5 HIV-1 strains or non-syncytium-inducing clinical isolates commensurate with a reduction in CCR5 mRNA. These results suggest a novel gene therapy approach to preventing or slowing the disease progression of HIV-1 infection.


Assuntos
Antagonistas dos Receptores CCR5 , Terapia Genética , HIV-1/efeitos dos fármacos , RNA Catalítico/genética , Linhagem Celular , HIV-1/metabolismo , Humanos , Cinética , Fusão de Membrana/efeitos dos fármacos , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/farmacologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo
17.
Oncogene ; 19(35): 4071-4, 2000 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-10962565

RESUMO

We have previously demonstrated that overexpression of Sam68 functionally substitutes for, as well as synergizes with, HIV-1 Rev in RRE-mediated gene expression and virus replication. In addition, C-terminal deletion mutants of Sam68 exhibit a transdominant negative phenotype in HIV replication. We now report that Sam68 also enhances the activities of Rev-like proteins of other complex retroviruses (e.g. HTLV-1 and EIAV) on their respective RNA targets. Furthermore, we demonstrate that Sam68 can function alone as well as synergize with Rev-MS2 and/or Rex-MS2 chimeric proteins on expression mediated by the corresponding RRE-MS2 fusion RNA element. Additionally, dominant negative mutants of Sam68 also repressed the synergistic activation of Sam68 with Rex, E-Rev, and/or Rev-MS2/Rex-MS2 on their corresponding RNA targets. Thus, Sam68 may play an important role in the post-transcriptional regulation of all complex retroviruses. Oncogene (2000) 19, 4071 - 4074


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene rev/fisiologia , Produtos do Gene rex/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Vírus da Anemia Infecciosa Equina/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ativação Transcricional , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/metabolismo , Cloranfenicol O-Acetiltransferase/biossíntese , Cloranfenicol O-Acetiltransferase/genética , Genes Dominantes , Genes Reporter , HIV-1/genética , HIV-1/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus da Anemia Infecciosa Equina/genética , Levivirus/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Produtos do Gene rev do Vírus da Imunodeficiência Humana
18.
J Biol Chem ; 275(42): 32694-700, 2000 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-10924507

RESUMO

Constitutive transport element (CTE) facilitates retroviral RNA export by interacting with the cellular RNA export machinery. Two cellular proteins, RNA helicase A (RHA) and Tip-associated protein (Tap) were identified as binding to CTE and were proposed to function as CTE co-factors (1,2). Here, we report that these two CTE-binding proteins interact with each other in vitro and in vivo. The in vitro binding of RHA to Tap is direct and independent of either CTE or the nuclear transport domain of RHA. The removal of the first 60 amino acids of Tap significantly diminishes the binding to RHA. The activity of this Tap mutant to enhance CTE-mediated gene expression is also markedly reduced. A transdominant mutant of Tap inhibited RHA-mediated up-regulation of CTE function in mammalian cells. The nuclear transport domain of RHA also interfered with Tap-mediated transactivation of the CTE function in quail cells, in which the function of CTE is dependent on the expression of a functional human Tap cDNA.


Assuntos
Autoantígenos/metabolismo , Betaretrovirus/fisiologia , Proteínas de Transporte Nucleocitoplasmático , Proteínas/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Animais , Betaretrovirus/genética , Células COS , Linhagem Celular , RNA Helicases DEAD-box , Células HeLa , Herpesvirus Saimiriíneo 2/genética , Herpesvirus Saimiriíneo 2/fisiologia , Humanos , Mamíferos , Proteínas de Neoplasias , Biossíntese de Proteínas , Codorniz , RNA Viral/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transcrição Gênica , Ativação Transcricional , Transfecção
19.
Blood ; 96(4): 1327-33, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10942374

RESUMO

Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1 delta EN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34(+) precursors of DCs. Here we extended these findings with HIV-1 delta EN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1 delta EN but further deleted in its remaining accessory genes vif, vpr, and vpu (HIV-1 delta EN V(3)) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1 delta EN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1-based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy. (Blood. 2000;96:1327-1333)


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/genética , Células Dendríticas/imunologia , Terapia Genética , Vetores Genéticos , HIV-1/genética , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Apresentação de Antígeno , Células Cultivadas , Técnicas de Transferência de Genes , Humanos , Imunoterapia
20.
Oncogene ; 19(32): 3570-5, 2000 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-10951562

RESUMO

Unlike cellular mRNA, retroviral mRNA bypasses the tight coupling of the splicing and nuclear export steps to allow the export of intron-containing viral RNA transcripts to the cytoplasm. Two distinct nuclear export pathways for retroviral mRNA have been described: a CRM-1 dependent pathway mediated by the HIV-1 Rev protein and the Rev Response Element (RRE), and a CRM-1 independent pathway mediated by the Constitutive Transport Element (CTE) of type D retroviruses. Two CTE-binding proteins, RNA helicase A (RHA) and Tap, have been implicated in the nuclear export of CTE-containing RNA. Recently, we reported that expression of RRE-containing RNA could also be mediated by a cellular protein, Sam68, independently of Rev. Here we report evidence that Sam68, RHA and Tap cooperate in the nuclear export of both CTE- and RRE-containing RNA. RHA binds to Sam68 and to Tap both in vivo and in vitro. Over-expression of Sam68 activates both RRE- and CTE-regulated reporter gene expression in human cells and in quail cells in the presence of human Tap. This activation was competitively inhibited by the nuclear transport domain (NTD) of RHA and a transdominant negative mutant of Tap. Conversely, the activation of CTE by Tap in quail cells was inhibited by a transdominant mutant of Sam68 and NTD. We propose that both HIV and type D retroviruses may access the same constitutive RNA nuclear export pathway involving RHA, Tap and Sam68, even though HIV also utilizes the Rev protein for more efficient nuclear export. it is likely that this constitutive export pathway is also used by cellular mRNA, but at a different interface with the splicing process.


Assuntos
Betaretrovirus/genética , HIV-1/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Transformada , Proteínas de Ligação a DNA , Regulação Viral da Expressão Gênica , Proteína do Núcleo p24 do HIV/genética , Células HeLa , Humanos , Mutagênese , Proteínas Nucleares/genética , RNA Helicases/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...