Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13035, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844802

RESUMO

This work features a new corona discharge plasma technology for de-inking yellow, blue, and red colors on various papers. This work was developed to minimize the chemical and environmental impacts of de-inking processes. A nonchemical contribution, operating at room temperature and atmospheric pressure, reduces the environmental impact of the process. The deinkability factor (DEMLab) values for all papers are determined with the optimal assessment results provided by a 36-mm variation gap at 2-min (blue) and 10-min (yellow and red) plasma exposure times, followed by applied voltages of 20 kV (yellow), 16 kV (blue), and 20 kV (red). The corona discharge plasma led to 48.58% (yellow printed paper), 64.11% (blue printed paper), and 41.11% (red printed paper) deinkability without altering the physical properties of the paper itself. The change in the tensile strength for the plasma-exposed paper was relatively little, less than 10%, compared to that of common recycling. The tensile strength of the untreated white paper was 5065 ± 487.44 N/mm2, and that of the plasma-treated printed paper was 4593 ± 248.47 N/mm2. It appears that there is little impact on the physicochemical properties of paper induced by the corona plasma treatment during the de-inking process.

2.
Sci Rep ; 13(1): 13210, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580377

RESUMO

Adsorption is regarded as an efficient method to eliminate per- and polyfluoroalkyl substances from an aqueous solution. In the present investigation, an adsorbent based on rice husks (RHs) was successfully prepared by phosphoric acid (PA) activation and dielectric barrier discharge (DBD) plasma treatment, and it was used to adsorb perfluorooctanoic acid (PFOA) from water. The electrodes employed in the experiment were planar type. This research investigated RH surface properties and adsorption capacity before and after modification using DBD plasma. The results revealed that the He-O2 plasma modification introduced oxygen-containing functional groups and increased the PFOA removal efficiency. Increasing the oxygen content and total gas flow rate to 30 vol.% and 1.5 L/min, respectively, with 10 min of RH plasma treatment time at 100 W plasma discharge power enhanced the PFOA removal efficiency to 92.0%, while non-treated RH showed the removal efficiency of only 46.4%. The removal efficiency of the solution increased to 96.7% upon adjusting the pH to 4. The adsorption equilibrium isotherms fitted the Langmuir model, and the adsorption kinetic followed the pseudo-second-order model. The maximum adsorption capacity was 565 mg/g when the Langmuir isotherm model was applied.

3.
Sci Rep ; 13(1): 829, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646782

RESUMO

High rates of new cervical cancer cases and deaths occur in low- and middle-income countries yearly, and one reason was found related to limitation of regular cervical cancer screening in local and low-resource settings. HPV has over 150 types, yet certain 14-20 high-risk and 13-14 low-risk types are common, and, thus, most conventional HPV nucleic acid assays, for examples, Cobas 4800 HPV test (Roche Diagnostics, New Jersey, USA) and REBA HPV-ID (Molecules and Diagnostics, Wonju, Republic of Korea) were developed to cover these types. We thereby utilized bioinformatics combined with recent isothermal amplification technique at 35-42 °C to firstly describe multiplex recombinase polymerase amplification assay that is specific to these common 20 high-risk and 14 low-risk types, and also L1 and E6/E7 genes that target different stages of cervical cancer development. Multiplex primer concentrations and reaction incubation conditions were optimized to allow simultaneous two gene detections at limit of detection of 1000 copies (equivalent to 2.01 fg) for L1 and 100 copies (0.0125 fg) for E6/E7, respectively. The assay was validated against urogenital and other pathogens, normal flora, and human control. In 130 real clinical sample tests, the assay demonstrated 100% specificity, 78% diagnostic accuracy, and 75% sensitivity compared with REBA HPV-ID test, and is much more rapid (15-40 min), less expensive (~ 3-4 USD/reaction) and does not require instrumentation (35-42 °C reaction condition so hand holding or tropical temperature is possible). Hence, the developed novel assay provides alternative screening tool for potential local screening. Furthermore, as this assay uses safe chemical reagents, it is safe for users.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Recombinases , Infecções por Papillomavirus/diagnóstico , Detecção Precoce de Câncer , Nucleotidiltransferases , Papillomaviridae/genética , Sensibilidade e Especificidade , DNA Viral/genética
4.
Sci Rep ; 11(1): 13827, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226600

RESUMO

Fatty acid methyl esters (FAMEs) are sustainable biofuel that can alleviate high oil costs and environmental impacts of petroleum-based fuel. A modified 1200 W high-efficiency food blender was employed for continuous transesterification of various refined vegetable oils and waste cooking oil (WCO) using sodium hydroxide as a homogeneous catalyst. The following factors have been investigated on their effects on FAME yield: baffles, reaction volume, total reactant flow rate, methanol-oil molar ratio, catalyst concentration and reaction temperature. Results indicated that the optimal conditions were: 2000 mL reaction volume, 50 mL/min total flow rate, 1% and 1.25% catalyst concentration for refined palm oil and WCO, respectively, 6:1 methanol-to-oil molar ratio and 62-63 °C, obtaining yield efficiency over 96.5% FAME yield of 21.14 × 10-4 g/J (for palm oil) and 19.39 × 10-4 g/J (for WCO). All the properties of produced FAMEs meet the EN 14214 and ASTM D6751 standards. The modified household food blender could be a practical and low-cost alternative biodiesel production apparatus for continuous biodiesel production for small communities in remote areas.

5.
Sci Rep ; 11(1): 14224, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244530

RESUMO

Partially hydrogenated fatty acid methyl ester (H-FAME) is conventionally produced through partial hydrogenation under high pressure and elevated temperature in the presence of a catalyst. Herein, a novel green, catalyst-free, non-thermal and atmospheric pressure dielectric barrier discharge (DBD) plasma was employed instead of a conventional method to hydrogenate palm FAME. H-FAME became more saturated with the conversion of C18:2 and C18:3 of 47.4 and 100%, respectively, at 100 W input power, 1 mm gas-filled gap size and 80% H2 in the mixed gas at room temperature for 5 h, causing a reduction of the iodine value from 50.2 to 43.5. Oxidation stability increased from 12.8 to 20 h while a cloud point changed from 13.5 to 16 °C. Interestingly, DBD plasma hydrogenation resulted in no trans-fatty acid formation which provided a positive effect on the cloud point. This green DBD plasma system showed a superior performance to a conventional catalytic reaction. It is an alternative method that is safe from explosion due to the mild operating condition, as well as being highly environmentally friendly by reducing waste and energy utilization from the regeneration process required for a catalytic process. This novel green plasma hydrogenation technique could also be applied to other liquid-based processes.

6.
ACS Sens ; 6(3): 742-751, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439634

RESUMO

Loop-mediated isothermal amplification (LAMP) has been widely used to detect many infectious diseases. However, minor inconveniences during the steps of adding reaction ingredients and lack of simple color results hinder point-of-care detection. We therefore invented a fluorometric paper-based LAMP by incorporating LAMP reagents, including a biotinylated primer, onto a cellulose membrane paper, with a simple DNA fluorescent dye incubation that demonstrated rapid and accurate results parallel to quantitative polymerase chain reaction (qPCR) methods. This technology allows for instant paper strip detection of methicillin-resistant Staphylococcus aureus (MRSA) in the laboratory and clinical samples. MRSA represents a major public health problem as it can cause infections in different parts of the human body and yet is resistant to commonly used antibiotics. In this study, we optimized LAMP reaction ingredients and incubation conditions following a central composite design (CCD) that yielded the shortest reaction time with high sensitivity. These CCD components and conditions were used to construct the paper-based LAMP reaction by immobilizing the biotinylated primer and the rest of the LAMP reagents to produce the ready-to-use MRSA diagnostic device. Our paper-based LAMP device could detect as low as 10 ag (equivalent to 1 copy) of the MRSA gene mecA within 36-43 min, was evaluated using both laboratory (individual cultures of MRSA and non-MRSA bacteria) and clinical blood samples to be 100% specific and sensitive compared to qPCR results, and had 35 day stability under 25 °C storage. Furthermore, the color readout allows for quantitation of MRSA copies. Hence, this device is applicable for point-of-care MRSA detection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
7.
Appl Radiat Isot ; 158: 109067, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32174380

RESUMO

An innovative seawater uranium adsorbent was prepared from the low-cost and commercially-available polyacrylonitrile (PAN) fibers. The optimum condition to synthesize the adsorbent was to irradiate the PAN fibers with 100 kGy gamma ray, amidoximate in 3 (w/v)% hydroxylamine hydrochloride solution for 75 min at 75 °C, yielding the PAN nitrile group conversion of approximately 60%. At 100 kGy, the degree of crystallinity of the irradiated fibers was also highest at 79.1%. The performances of the adsorbent in seawater samples were excellent. By submersion in the seawater sample spiked with 250 ppb of uranium for 4 weeks, the prepared fibers exhibited the adsorption capacity of 32.28 mg/g adsorbent. By submersion in seawater samples spiked with 76.5 ppm of uranium for 1 week and 945 ppm of uranium for up to 4 weeks, the fibers exhibited the adsorption capacities of 111.25 and 200.07 mg/g adsorbent, respectively. The adsorbent showed a uranium adsorption capacity of 0.11 mg/g adsorbent for 8 weeks of soaking in brine concentrate from a seawater reverse osmosis plant. The kinetics of seawater absorption by the adsorbent was quite rapid, reaching the equilibrium swelling ratio of approximately 300% in 5 min or less. Another important finding was that the prepared PAN fibers exhibit the characteristics of a superabsorbent material (equilibrium swelling ratio in DI water of 5,550%). The low cost and the ease of preparation of the fibers offer a novel environmental remediation process to adsorb uranium ions released into seawater following a nuclear accident.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA