Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Imaging Biol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684581

RESUMO

PURPOSE: Gadolinium (Gd)-based contrast agents are primarily used for contrast-enhanced magnetic resonance lymphangiography (MRL). However, overcoming venous contamination issues remains challenging. This study aims to assess the MRL efficacy of the newly developed iron-based contrast agent (INV-001) that is specially designed to mitigate venous contamination issues. The study further explores the optimal dosage, including both injection volume and concentration, required to achieve successful visualization of the popliteal lymph nodes and surrounding lymphatic vessels. PROCEDURES: All animals utilized in this study were male Sprague-Dawley (SD) rats weighing between 250 and 300 g. The contrast agents prepared were injected intradermally in the fourth phalanx of both hind limbs using a 30-gauge syringe in SD rats. MRL was performed every 16 min on a coronal 3D time-of-flight sequence with saturation bands using a 9.4-T animal machine. RESULTS: Contrary to Gd-DOTA, which exhibited venous contamination in most animals irrespective of injection dosages and conditions, INV-001 showed no venous contamination. For Gd-DOTA, the popliteal lymph nodes and lymphatic vessels reached peak enhancement 16 min after injection from the injection site and then rapidly washed out. However, with INV-001, they reached peak enhancement between 16 and 32 min after injection, with prolonged visualization of the popliteal lymph node and lymphatic vessels. INV-001 at 0.45 µmol (15 mM, 30 µL) and 0.75 µmol (15 mM, 50 µL) achieved high scores for qualitative image analysis, providing good visualization of the popliteal lymph nodes and lymphatic vessels without issues of venous contamination, interstitial space enhancement, or lymph node enlargement. CONCLUSION: In MRL, INV-001, a novel T1 contrast agent based on iron, enables prolonged enhancement of popliteal lymph nodes and lymphatic vessels without venous contamination.

2.
Biomedicines ; 12(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397986

RESUMO

Chemical exchange saturation transfer with glutamate (GluCEST) imaging is a novel technique for the non-invasive detection and quantification of cerebral Glu levels in neuromolecular processes. Here we used GluCEST imaging and 1H magnetic resonance spectroscopy (1H MRS) to assess in vivo changes in Glu signals within the hippocampus in a rat model of depression induced by a forced swim test. The forced swimming test (FST) group exhibited markedly reduced GluCEST-weighted levels and Glu concentrations when examined using 1H MRS in the hippocampal region compared to the control group (GluCEST-weighted levels: 3.67 ± 0.81% vs. 5.02 ± 0.44%, p < 0.001; and Glu concentrations: 6.560 ± 0.292 µmol/g vs. 7.133 ± 0.397 µmol/g, p = 0.001). Our results indicate that GluCEST imaging is a distinctive approach to detecting and monitoring Glu levels in a rat model of depression. Furthermore, the application of GluCEST imaging may provide a deeper insight into the neurochemical involvement of glutamate in various psychiatric disorders.

3.
Metabolites ; 13(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233677

RESUMO

Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool to detect glutamate signal alterations caused by neuroinflammation. This study aimed to visualize and quantitatively evaluate hippocampal glutamate alterations in a rat model of sepsis-induced brain injury using GluCEST and proton magnetic resonance spectroscopy (1H-MRS). Twenty-one Sprague Dawley rats were divided into three groups (sepsis-induced groups (SEP05, n = 7 and SEP10, n = 7) and controls (n = 7)). Sepsis was induced through a single intraperitoneal injection of lipopolysaccharide (LPS) at a dose of 5 mg/kg (SEP05) or 10 mg/kg (SEP10). GluCEST values and 1H-MRS concentrations in the hippocampal region were quantified using conventional magnetization transfer ratio asymmetry and a water scaling method, respectively. In addition, we examined immunohistochemical and immunofluorescence staining to observe the immune response and activity in the hippocampal region after LPS exposure. The GluCEST and 1H-MRS results showed that GluCEST values and glutamate concentrations were significantly higher in sepsis-induced rats than those in controls as the LPS dose increased. GluCEST imaging may be a helpful technique for defining biomarkers to estimate glutamate-related metabolism in sepsis-associated diseases.

4.
Heliyon ; 9(5): e15596, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206053

RESUMO

Aryl hydrocarbon receptors (AhRs) have been reported to be important mediators of ischemic injury in the brain. Furthermore, the pharmacological inhibition of AhR activation after ischemia has been shown to attenuate cerebral ischemia-reperfusion (IR) injury. Here, we investigated whether AhR antagonist administration after ischemia was also effective in ameliorating hepatic IR injury. A 70% partial hepatic IR (45-min ischemia and 24-h reperfusion) injury was induced in rats. We administered 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg) intraperitoneally 10 min after ischemia. Hepatic IR injury was observed using serum, magnetic resonance imaging-based liver function indices, and liver samples. TMF-treated rats showed significantly lower relative enhancement (RE) values and serum alanine aminotransferase (ALT) and aspartate aminotransferase levels than did untreated rats at 3 h after reperfusion. After 24 h of reperfusion, TMF-treated rats had significantly lower RE values, ΔT1 values, serum ALT levels, and necrotic area percentage than did untreated rats. The expression of the apoptosis-related proteins, Bax and cleaved caspase-3, was significantly lower in TMF-treated rats than in untreated rats. This study demonstrated that inhibition of AhR activation after ischemia was effective in ameliorating IR-induced liver injury in rats.

5.
J Clin Transl Hepatol ; 10(6): 1167-1175, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36381105

RESUMO

Background and Aims: Efficacy evaluations with preclinical magnetic resonance imaging (MRI) are uncommon, but MRI in the preclinical phase of drug development provides information that is useful for longitudinal monitoring. The study aim was to monitor the protective effectiveness of silymarin with multiparameter MRI and biomarkers in a thioacetamide (TAA)-induced model of liver injury in rats. Correlation analysis was conducted to assess compare the monitoring of liver function by MRI and biomarkers. Methods: TAA was injected three times a week for 8 weeks to generate a disease model (TAA group). In the TAA and silymarin-treated (TAA-SY) groups, silymarin was administered three times weekly from week 4. MR images were acquired at 0, 2, 4, 6, and 8 weeks in the control, TAA, and TAA-SY groups. Results: The area under the curve to maximum time (AUCtmax) and T2* values of the TAA group decreased over the study period, but the serological markers of liver abnormality increased significantly more than those in the control group. In the TAA-SY group, MRI and serological biomarkers indicated attenuation of liver function as in the TAA group. However, pattern changes were observed from week 6 to comparable levels in the control group with silymarin treatment. Negative correlations between either AUCtmax or T2* values and the serological biomarkers were observed. Conclusions: Silymarin had hepatoprotective effects on TAA-induced liver injury and demonstrated the usefulness of multiparametric MRI to evaluate efficacy in preclinical studies of liver drug development.

6.
Neurotherapeutics ; 18(4): 2692-2706, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545550

RESUMO

In intracerebral hemorrhage (ICH), delayed secondary neural damages largely occur from perihematomal edema (PHE) resulting from the disruption of the blood-brain barrier (BBB). PHE is often considered the principal cause of morbidity and mortality in patients with ICH. Nevertheless, the main cellular mechanism as well as the specific BBB component involved in the formation of PHE after ICH remains elusive. Herein, we evaluated the role of AQP4, a water channel expressed on the astrocytes of the BBB, in the formation of PHE in ICH. The static and dynamic functions of the BBB were evaluated by analyzing the microstructure and leakage assay. Protein changes in the PHE lesion were analyzed and the control mechanism of AQP4 expression by reactive oxygen species was also investigated. Delayed PHE formation due to BBB disruption after ICH was confirmed by the decreased coverage of multiple BBB components and increased dynamic leakages. Microstructure assay showed that among the BBB components, AQP4 showed a markedly decreased expression in the PHE lesions. The decrease in AQP4 was due to microenvironmental ROS derived from the hemorrhage and was restored by treatment with ROS scavenger. AQP4-deficient mice had significantly larger PHE lesions and unfavorable survival outcomes compared with wild-type mice. Our data identify AQP4 as a specific BBB-modulating target for alleviating PHE in ICH. Further comprehensive studies are needed to form the preclinical basis for the use of AQP4 enhancers as BBB modulators for preventing delayed cerebral edema after ICH.


Assuntos
Aquaporina 4 , Barreira Hematoencefálica , Animais , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Edema , Humanos , Camundongos , Regulação para Cima
7.
Metabolomics ; 17(4): 36, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738589

RESUMO

INTRODUCTION: Chemotherapy is a major etiology of cachexia. Ginseng products are known to have various anti-cachectic and health-promoting effects, such as inhibiting inflammation and promoting energy production. In particular, BST204, purified ginseng dry extract, contains multiple ginsenosides that can reduce chemotherapy-related fatigue and toxicity. OBJECTIVES: To investigate the effects of BST204 on the alleviation of chemotherapy-induced cachexia using a multimodal approach. METHODS: In a CT26 mouse syngeneic colon cancer model, cachexia was predominantly induced by chemotherapy with 5-fluorouracil (5-FU) than by tumor growth. BST204 at a dose of 100 or 200 mg/kg was administered to 5-FU-treated mice. RESULTS: BST204 significantly mitigated the decrease in tumor-excluded body weight (change in 5-FU group and BST204 groups: - 13% vs. - 6% on day 7; - 30% vs. - 20% on day 11), muscle volume (- 19% vs. - 11%), and fat volume (- 91% vs. - 56%). The anti-cachectic effect of BST204 was histologically demonstrated by an improved balance between muscle regeneration and degeneration and a decrease in muscle cross-sectional area reduction. CONCLUSION: Chemotherapy-induced cachexia was biochemically and metabolically characterized by activated inflammation, enhanced oxidative stress, increased protein degradation, decreased protein stabilization, reduced glucose-mediated energy production, and deactivated glucose-mediated biosynthesis. These adverse effects were significantly improved by BST204 treatment. Overall, our multimodal study demonstrated that BST204 could effectively alleviate chemotherapy-induced cachexia.


Assuntos
Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Tratamento Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Inflamação , Interleucina-6/sangue , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
8.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322784

RESUMO

BACKGROUND: Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool that can be used to detect changes in glutamate levels in vivo and could also be helpful in the diagnosis of brain myelin changes. We investigated glutamate level changes in the cerebral white matter of a rat model of cuprizone-administered demyelination and remyelination using GluCEST. METHOD: We used a 7 T pre-clinical magnetic resonance imaging (MRI) system. The rats were divided into the normal control (CTRL), cuprizone-administered demyelination (CPZDM), and remyelination (CPZRM) groups. GluCEST data were analyzed using the conventional magnetization transfer ratio asymmetry in the corpus callosum. Immunohistochemistry and transmission electron microscopy analyses were also performed to investigate the myelinated axon changes in each group. RESULTS: The quantified GluCEST signals differed significantly between the CPZDM and CTRL groups (-7.25 ± 1.42% vs. -2.84 ± 1.30%; p = 0.001). The increased GluCEST signals in the CPZDM group decreased after remyelination (-6.52 ± 1.95% in CPZRM) to levels that did not differ significantly from those in the CTRL group (p = 0.734). CONCLUSION: The apparent temporal signal changes in GluCEST imaging during demyelination and remyelination demonstrated the potential usefulness of GluCEST imaging as a tool to monitor the myelination process.


Assuntos
Axônios/metabolismo , Corpo Caloso/metabolismo , Doenças Desmielinizantes/metabolismo , Ácido Glutâmico/metabolismo , Remielinização , Administração Oral , Animais , Axônios/ultraestrutura , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/ultraestrutura , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Modelos Animais de Doenças , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Ratos , Ratos Sprague-Dawley
9.
Sci Rep ; 10(1): 14906, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913241

RESUMO

Aryl hydrocarbon receptor (AhR) antagonism can mitigate cellular damage associated with cerebral ischaemia and reperfusion (I/R) injury. This study investigated the neuroprotective effects of AhR antagonist administration before reperfusion in a rat stroke model and influence of the timing of AhR antagonist administration on its neuroprotective effects. Magnetic resonance imaging (MRI) was performed at baseline, immediately after, and 3, 8, and 24 h after ischaemia in the sham, control (I/R injury), TMF10 (trimethoxyflavone [TMF] administered 10 min post-ischaemia), and TMF50 (TMF administered 50 min post-ischaemia) groups. The TMF treatment groups had significantly fewer infarcts than the control group. At 24 h, the relative apparent diffusion coefficient values of the ischaemic core and peri-infarct region were significantly higher and relative T2 values were significantly lower in the TMF10 groups than in the control group. The TMF treatment groups showed significantly fewer terminal deoxynucleotidyl transferase dUTP nick-end labelling positive (+) cells (%) in the peri-infarct region than the control group. This study demonstrated that TMF treatment 10 or 50 min after ischaemia alleviated brain damage. Furthermore, the timing of AhR antagonist administration affected the inhibition of cellular or vasogenic oedema formation caused by a transient ischaemic stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Lactamas/farmacologia , Mupirocina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Masculino , Mupirocina/farmacologia , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
10.
Diagnostics (Basel) ; 10(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784483

RESUMO

PURPOSE: To investigate glutamate signal distributions in multiple brain regions of a healthy rat brain using glutamate-weighted chemical exchange saturation transfer (GluCEST) imaging. METHOD: The GluCEST data were obtained using a 7.0 T magnetic resonance imaging (MRI) scanner, and all data were analyzed using conventional magnetization transfer ratio asymmetry in eight brain regions (cortex, hippocampus, corpus callosum, and rest of midbrain in each hemisphere). GluCEST data acquisition was performed again one month later in five randomly selected rats to evaluate the stability of the GluCEST signal. To evaluate glutamate level changes calculated by GluCEST data, we compared the results with the concentration of glutamate acquired from 1H magnetic resonance spectroscopy (1H MRS) data in the cortex and hippocampus. RESULTS: GluCEST signals showed significant differences (all p ≤ 0.001) between the corpus callosum (-1.71 ± 1.04%; white matter) and other brain regions (3.59 ± 0.41%, cortex; 5.47 ± 0.61%, hippocampus; 4.49 ± 1.11%, rest of midbrain; gray matter). The stability test of GluCEST findings for each brain region was not significantly different (all p ≥ 0.263). In line with the GluCEST results, glutamate concentrations measured by 1H MRS also appeared higher in the hippocampus (7.30 ± 0.16 µmol/g) than the cortex (6.89 ± 0.72 µmol/g). CONCLUSION: Mapping of GluCEST signals in the healthy rat brain clearly visualize glutamate distributions. These findings may yield a valuable database and insights for comparing glutamate signal changes in pre-clinical brain diseases.

11.
Korean J Physiol Pharmacol ; 24(2): 173-183, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140041

RESUMO

An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

12.
Diagnostics (Basel) ; 11(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396601

RESUMO

This study quantitatively measured the changes in metabolites in the hippocampal lesions of a rat model of cuprizone-induced demyelination as detected using in vivo 7 T proton magnetic resonance spectroscopy. Nineteen Sprague Dawley rats were randomly divided into two groups and fed a normal chow diet or cuprizone (0.2%, w/w) for 7 weeks. Demyelinated hippocampal lesions were quantitatively measured using a 7 T magnetic resonance imaging scanner. All proton spectra were quantified for metabolite concentrations and relative ratios. Compared to those in the controls, the cuprizone-induced rats had significantly higher concentrations of glutamate (p = 0.001), gamma-aminobutyric acid (p = 0.019), and glutamate + glutamine (p = 0.001); however, creatine + phosphocreatine (p = 0.006) and myo-inositol (p = 0.001) concentrations were lower. In addition, we found that the glutamine and glutamate complex/total creatine (p < 0.001), glutamate/total creatine (p < 0.001), and GABA/total creatine (p = 0.002) ratios were significantly higher in cuprizone-treated rats than in control rats. Our results showed that cuprizone-induced neuronal demyelination may influence the severe abnormal metabolism in hippocampal lesions, and these responses could be caused by microglial activation, mitochondrial dysfunction, and astrocytic necrosis.

13.
Mol Imaging Biol ; 22(4): 924-930, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31858369

RESUMO

PURPOSE: To evaluate the effects of a reference image and keyhole factor (Kf) selections for high-frequency substitution on keyhole imaging technique for applications in glutamate chemical exchange saturation transfer (GluCEST) imaging. PROCEDURES: The CEST data were obtained using a 7.0 T MRI scanner. We used varied Kf ranges that constituted from 16.67 to 75 % of the full k-space. The reference image was respectively selected for - 3 and + 3 ppm images that associated with the GluCEST calculation and the unsaturated image. The zero-padding algorithm was applied for the missing k-space lines in the low-frequency data collected to compare the results obtained from using the keyhole imaging technique. All the techniques were evaluated using a healthy rat group and extended to the status epilepticus rat group to explore their applicability and usability. RESULTS: The calculated GluCEST signals and visually inspected results from the reconstructed GluCEST maps indicated that the combination of unsaturated image as a reference image, and over 50 % of Kf showed consistent signals and image quality compared with the fully sampled CEST data. CONCLUSIONS: Combining the keyhole imaging technique with GluCEST imaging enables stable image reconstruction and quantitative evaluation, and this approach is potentially applicable in various CEST imaging applications.


Assuntos
Ácido Glutâmico/química , Imageamento por Ressonância Magnética , Animais , Artefatos , Hipocampo/diagnóstico por imagem , Masculino , Ratos Sprague-Dawley
14.
BMC Med Imaging ; 19(1): 89, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729971

RESUMO

BACKGROUND: To facilitate translational drug development for liver fibrosis, preclinical trials need to be run in parallel with clinical research. Liver function estimation by gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI) is being established in clinical research, but still rarely used in preclinical trials. We aimed to evaluate feasibility of DCE-MRI indices as translatable biomarkers in a liver fibrosis animal model. METHODS: Liver fibrosis was induced in Sprague-Dawley rats by thioacetamide (200 mg, 150 mg, and saline for the high-dose, low-dose, and control groups, respectively). Subsequently, DCE-MRI was performed to measure: relative liver enhancement at 3-min (RLE-3), RLE-15, initial area-under-the-curve until 3-min (iAUC-3), iAUC-15, and maximum-enhancement (Emax). The correlation coefficients between these MRI indices and the histologic collagen area, indocyanine green retention at 15-min (ICG-R15), and shear wave elastography (SWE) were calculated. Diagnostic performance to diagnose liver fibrosis was also evaluated by receiver-operating-characteristic (ROC) analysis. RESULTS: Animal model was successful in that the collagen area of the liver was the largest in the high-dose group, followed by the low-dose group and control group. The correlation between the DCE-MRI indices and collagen area was high for iAUC-15, Emax, iAUC-3, and RLE-3 but moderate for RLE-15 (r, - 0.81, - 0.81, - 0.78, - 0.80, and - 0.51, respectively). The DCE-MRI indices showed moderate correlation with ICG-R15: the highest for iAUC-15, followed by iAUC-3, RLE-3, Emax, and RLE-15 (r, - 0.65, - 0.63, - 0.62, - 0.58, and - 0.56, respectively). The correlation coefficients between DCE-MRI indices and SWE ranged from - 0.59 to - 0.28. The diagnostic accuracy of RLE-3, iAUC-3, iAUC-15, and Emax was 100% (AUROC 1.000), whereas those of RLE-15 and SWE were relatively low (AUROC 0.777, 0.848, respectively). CONCLUSION: Among the gadoxetate-enhanced DCE-MRI indices, iAUC-15 and iAUC-3 might be bidirectional translatable biomarkers between preclinical and clinical research for evaluating histopathologic liver fibrosis and physiologic liver functions in a non-invasive manner.


Assuntos
Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Cirrose Hepática/diagnóstico por imagem , Fígado/fisiopatologia , Animais , Área Sob a Curva , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estudos de Viabilidade , Humanos , Fígado/diagnóstico por imagem , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/fisiopatologia , Testes de Função Hepática , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Tioacetamida/efeitos adversos
15.
Transl Oncol ; 12(9): 1264-1270, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302474

RESUMO

Immune checkpoint inhibitors (ICIs) have become an effective therapeutic option for colorectal cancer and studies on these drugs have therefore increased greatly. Efficacy assessments of ICIs in preclinical orthotopic colorectal cancer using MRI have not been reported however due to the difficulties in conducting colorectal imaging. The purpose of this present study was to investigate the feasibility of using magnetic resonance colonography (MRC) to evaluate the efficacy of an ICI, an anti-PD-L1 antibody, in an orthotopic colorectal cancer mouse model. The mouse model was generated by the engraftment of colorectal cancer cells into the submucosal layer of the colon. Anti-cancer efficacy was assessed by tumor volume and metastatic tumor number analyses, and these values were significantly lower in the PD-L1 antibody-treated group compared to the controls. Histological analyses using H&E and Ki-67 immunohistochemical staining confirmed a highly efficacious tumor growth inhibition and enhanced infiltration by CD4+ and CD8+ lymphocytes in the PD-L1 antibody-treated group. We conclude that MRC has the potential to be used for ICI efficacy assessments against orthotopic colorectal cancer mouse model.

16.
Mol Imaging Biol ; 21(6): 1064-1070, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30989439

RESUMO

PURPOSE: To evaluate the feasibility of motion correction in glutamate chemical exchange saturation transfer (GluCEST) imaging, using a rat model of epileptic seizure. PROCEDURES: Epileptic seizure was induced in six male Wistar rats by intraperitoneal injection of kainic acid (KA). CEST data were obtained using a 7.0 T Bruker MRI scanner before and 3 h after KA injection. Retrospective motion correction was performed in CEST images using a gradient-based motion correction (GradMC) algorithm. GluCEST signals in the hippocampal regions were quantitatively evaluated with and without motion correction. RESULTS: Calculated GluCEST signals differed significantly between the pre-KA injection group, regardless of motion-correction implementation, and the post-KA injection group with motion correction (3.662 ± 1.393 % / 3.726 ± 1.982 % for pre-KA injection group with/without motion correction vs. 6.996 ± 1.684 % for post-KA injection group with motion correction; all P < 0.05). CONCLUSIONS: Our results clearly show that GradMC can be used in CEST imaging for efficient correction of seizure-like motion. The GradMC can be further implemented in various CEST imaging techniques to increase the accuracy of analysis.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Movimento (Física) , Animais , Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Ácido Caínico , Masculino , Ratos Wistar , Estudos Retrospectivos
17.
Brain Res ; 1717: 176-181, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991042

RESUMO

PURPOSE: To evaluate temporal changes in gamma-aminobutyric acid (GABA) signals in the hippocampus during epileptiform activity induced by kainic acid (KA) in a rat model of status epilepticus using chemical exchange saturation transfer (CEST) imaging technique. METHODS: CEST imaging and 1H magnetic resonance spectroscopy (1H MRS) were applied to a systemic KA-induced rat model to compare GABA signals. All data acquisition and analytical procedures were performed at three different time points (before KA injection, and 1 and 3 h after injection). The CEST signal was analyzed based on regions of interests (ROIs) in the hippocampus, while 1H MRS was analyzed within a 12.0 µL ROI in the left hippocampus. Signal correlations between the two methods were evaluated as a function of time change up to 3 h after KA injection. RESULTS: The measured GABA CEST-weighted signal intensities of the rat epileptic hippocampus before injection showed significant differences from those after (averaged signals from both hippocampi: 4.37% ±â€¯0.87% and 7.305 ±â€¯1.11%; P < 0.05), although the signal had increased slightly at both time points after KA injection, the differences were not significant (P > 0.05). In contrast, the correlation between the CEST imaging values and 1H MRS was significant (r ≥ 0.64; P < 0.05; in all cases). CONCLUSIONS: GABA signal changes during epileptiform activity in the rat hippocampus, as detected using CEST imaging, provided a significant contrast according to changes in metabolic activity. Our technical approach may serve as a potential supplemental option to provide biomarkers for brain disease.


Assuntos
Hipocampo/metabolismo , Estado Epiléptico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Ácido Caínico/farmacologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
18.
J Magn Reson Imaging ; 50(6): 1866-1872, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033089

RESUMO

BACKGROUND: Glutamate chemical exchange saturation transfer (GluCEST) imaging has been widely used in brain psychiatric disorders. Glutamate signal changes may help to evaluate the sleep-related disorders, and could be useful in diagnosis. PURPOSE: To evaluate signal changes in the hippocampus and cortex of a rat model of stress-induced sleep disturbance using GluCEST. STUDY TYPE: Prospective animal study. ANIMAL MODEL: Fourteen male Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE: 7.0T small bore MRI / fat-suppressed, turbo-rapid acquisition with relaxation enhancement (RARE) for CEST, and spin-echo, point-resolved proton MR spectroscopy (1 H MRS). ASSESSMENT: Rats were divided into two groups: the stress-induced sleep-disturbance group (SSD, n = 7) and the control group (CTRL, n = 7), to evaluate and compare the cerebral glutamate signal changes. GluCEST data were quantified using a conventional magnetization transfer ratio asymmetry in the left- and right-side hippocampus and cortex. The correlation between GluCEST signal and glutamate concentrations, derived from 1 H MRS, was evaluated. STATISTICAL ANALYSIS: Wilcoxon rank-sum test between CEST signals and multiparametric MR signals, Wilcoxon signed-rank test between CEST signals on the left and right hemispheres, and a correlation test between CEST signals and glutamate concentrations derived from 1 H MRS. RESULTS: Measured GluCEST signals showed significant differences between the two groups (left hippocampus; 4.23 ± 0.27% / 5.27 ± 0.42% [SSD / CTRL, P = 0.002], right hippocampus; 4.50 ± 0.44% / 5.04 ± 0.34% [P = 0.035], left cortex; 2.81 ± 0.38% / 3.56 ± 0.41% [P = 0.004], and right cortex; 2.95 ± 0.47% / 3.82 ± 0.26% [P = 0.003]). GluCEST signals showed positive correlation with glutamate concentrations (R2 = 0.312; P = 0.038). DATA CONCLUSION: GluCEST allowed the visualization of cerebral glutamate changes in rats subjected to sleep disturbance, and may yield valuable insights for interpreting alterations in cerebral biochemical information. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1866-1872.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética/métodos , Transtornos do Sono-Vigília/metabolismo , Estresse Psicológico/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Estresse Psicológico/complicações
19.
Eur Radiol ; 29(8): 4096-4104, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30666450

RESUMO

OBJECTIVES: To assess whether increases in amide proton transfer (APT)-weighted signal reflect the effects of tissue recovery from acidosis using transient rat middle cerebral artery occlusion (MCAO) models, compared to permanent occlusion models. MATERIALS AND METHODS: Twenty-four rats with MCAO (17 transient and seven permanent occlusions) were prepared. APT-weighted signal (APTw), apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and MR spectroscopy were evaluated at three stages in each group (occlusion, reperfusion/1 h post-occlusion, and 3 h post-reperfusion/4 h post-occlusion). Deficit areas showing 30% reduction to the contralateral side were measured. Temporal changes were compared with repeated measures of analysis of variance. Relationship between APTw and lactate concentration was calculated. RESULTS: Both APTw and CBF values increased and APTw deficit area reduced at reperfusion (largest p = .002) in transient occlusion models, but this was not demonstrated in permanent occlusion. No significant temporal change was demonstrated with ADC at reperfusion. APTw deficit area was between ADC and CBF deficit areas in transient occlusion model. APTw correlated with lactate concentration at occlusion (r = - 0.49, p = .04) and reperfusion (r = - 0.32, p = .02). CONCLUSIONS: APTw values increased after reperfusion and correlated with lactate content, which suggests that APT-weighted MRI could become a useful imaging technique to reflect tissue acidosis and its reversal. KEY POINTS: • APT-weighted signal increases in the tissue reperfusion, while remains stable in the permanent occlusion. • APTw deficit area was between ADC and CBF deficit areas in transient occlusion model, possibly demonstrating metabolic penumbra. • APTw correlated with lactate concentration during ischemia and reperfusion, indicating tissue acidosis.


Assuntos
Acidose/diagnóstico , Acidose/etiologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Acidose/patologia , Amidas , Animais , Circulação Cerebrovascular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Masculino , Prótons , Ratos , Ratos Wistar
20.
Acad Radiol ; 26(12): e348-e354, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30661976

RESUMO

RATIONALE AND OBJECTIVES: Variation in tissue damage after cerebral ischemia/reperfusion (I/R) can cause uncertainty in stroke-related studies, which can be reduced if the damage can be predicted early after ischemia by measuring the apparent diffusion coefficient (ADC). We investigated whether ADC measurement in the acute phase can predict permanent cerebral I/R injury. MATERIALS AND METHODS: The middle cerebral artery occlusion model was established using the intraluminal suture method to induce 60 minutes of ischemia followed by reperfusion in rats. T2-weighted images and diffusion-weighted images were obtained at 30 minutes and 24 hours after ischemia. Neuronal cell survival was assessed by neuronal nuclei (NeuN) immunofluorescence staining. The correlation between relative ADC (rADC) values at 30 minutes and I/R injury at 24 hours after ischemia was analyzed. Magnetic resonance imaging results were confirmed by histologic analysis. RESULTS: The correlation between rADC values at 30 minutes and 24 hours was strong in the ischemic core and peri-infarct region but moderate in the anterior choroidal and hypothalamic region. Histologic analysis revealed that the correlation between rADC values at 30 minutes and the number of NeuN-positive cells at 24 hours was strong in the ischemic core and peri-infarct region but moderate in the anterior choroidal and hypothalamic region. Furthermore, there was a strong positive correlation between the sum of rADC values of three regions at 30 minutes and the infarct volume at 24 hours. CONCLUSION: ADC measurement in the acute phase can predict permanent cerebral I/R injury and provide important information for the evaluation of ischemic stroke.


Assuntos
Isquemia Encefálica/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico , Animais , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , Masculino , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...