Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Patterns (N Y) ; 4(11): 100875, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38035191

RESUMO

The need for efficient computational screening of molecular candidates that possess desired properties frequently arises in various scientific and engineering problems, including drug discovery and materials design. However, the enormous search space containing the candidates and the substantial computational cost of high-fidelity property prediction models make screening practically challenging. In this work, we propose a general framework for constructing and optimizing a high-throughput virtual screening (HTVS) pipeline that consists of multi-fidelity models. The central idea is to optimally allocate the computational resources to models with varying costs and accuracy to optimize the return on computational investment. Based on both simulated and real-world data, we demonstrate that the proposed optimal HTVS framework can significantly accelerate virtual screening without any degradation in terms of accuracy. Furthermore, it enables an adaptive operational strategy for HTVS, where one can trade accuracy for efficiency.

2.
iScience ; 26(1): 105735, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582827

RESUMO

As global interest in renewable energy continues to increase, there has been a pressing need for developing novel energy storage devices based on organic electrode materials that can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find materials whose redox potential (RP) meets specific design targets. In this study, we propose a computational framework for addressing this challenge through the effective design and optimal operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the RP of a given material, we show how a set of surrogate models with different accuracy and complexity may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that the proposed HTVS pipeline construction and operation strategies substantially enhance the overall screening throughput.

3.
Nat Commun ; 13(1): 2178, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449140

RESUMO

Photodynamic therapy (PDT) offers several advantages for treating cancers, but its efficacy is highly dependent on light delivery to activate a photosensitizer. Advances in wireless technologies enable remote delivery of light to tumors, but suffer from key limitations, including low levels of tissue penetration and photosensitizer activation. Here, we introduce DeepLabCut (DLC)-informed low-power wireless telemetry with an integrated thermal/light simulation platform that overcomes the above constraints. The simulator produces an optimized combination of wavelengths and light sources, and DLC-assisted wireless telemetry uses the parameters from the simulator to enable adequate illumination of tumors through high-throughput (<20 mice) and multi-wavelength operation. Together, they establish a range of guidelines for effective PDT regimen design. In vivo Hypericin and Foscan mediated PDT, using cancer xenograft models, demonstrates substantial suppression of tumor growth, warranting further investigation in research and/or clinical settings.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Inteligência Artificial , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Telemetria
4.
Bioinformatics ; 37(10): 1401-1410, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33165517

RESUMO

MOTIVATION: Alignment of protein-protein interaction networks can be used for the unsupervised prediction of functional modules, such as protein complexes and signaling pathways, that are conserved across different species. To date, various algorithms have been proposed for biological network alignment, many of which attempt to incorporate topological similarity between the networks into the alignment process with the goal of constructing accurate and biologically meaningful alignments. Especially, random walk models have been shown to be effective for quantifying the global topological relatedness between nodes that belong to different networks by diffusing node-level similarity along the interaction edges. However, these schemes are not ideal for capturing the local topological similarity between nodes. RESULTS: In this article, we propose MONACO, a novel and versatile network alignment algorithm that finds highly accurate pairwise and multiple network alignments through the iterative optimal matching of 'local' neighborhoods around focal nodes. Extensive performance assessment based on real networks as well as synthetic networks, for which the ground truth is known, demonstrates that MONACO clearly and consistently outperforms all other state-of-the-art network alignment algorithms that we have tested, in terms of accuracy, coherence and topological quality of the aligned network regions. Furthermore, despite the sharply enhanced alignment accuracy, MONACO remains computationally efficient and it scales well with increasing size and number of networks. AVAILABILITY AND IMPLEMENTATION: Matlab implementation is freely available at https://github.com/bjyoontamu/MONACO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Algoritmos , Biologia Computacional , Difusão
5.
PLoS One ; 15(1): e0227598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986158

RESUMO

Comparative network analysis provides effective computational means for gaining novel insights into the structural and functional compositions of biological networks. In recent years, various methods have been developed for biological network alignment, whose main goal is to identify important similarities and critical differences between networks in terms of their topology and composition. A major impediment to advancing network alignment techniques has been the lack of gold-standard benchmarks that can be used for accurate and comprehensive performance assessment of such algorithms. The original NAPAbench (network alignment performance assessment benchmark) was developed to address this problem, and it has been widely utilized by many researchers for the development, evaluation, and comparison of novel network alignment techniques. In this work, we introduce NAPAbench 2-a major update of the original NAPAbench that was introduced in 2012. NAPAbench 2 includes a completely redesigned network synthesis algorithm that can generate protein-protein interaction (PPI) network families whose characteristics closely match those of the latest real PPI networks. Furthermore, the network synthesis algorithm comes with an intuitive GUI that allows users to easily generate PPI network families with an arbitrary number of networks of any size, according to a flexible user-defined phylogeny. In addition, NAPAbench 2 provides updated benchmark datasets-created using the redesigned network synthesis algorithm-which can be used for comprehensive performance assessment of network alignment algorithms and their scalability.


Assuntos
Algoritmos , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Bases de Dados Factuais , Filogenia , Mapeamento de Interação de Proteínas/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA