Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(5): 875-885.e5, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36754050

RESUMO

Auditory-induced arousal is a defense mechanism of animals against potential dangers. Although the thalamus is the neural substrate that relays sensory information to the cortex, its function is reduced during slow-wave sleep (SWS), also known as deep sleep. Despite this, animals are capable of waking up in response to external sensory stimuli, suggesting the existence of neural circuits that are involved in this response. Here, we report that kainate-class-type ionotropic glutamate receptor subunit 4 (GRIK4)-positive mediodorsal (MD) thalamic neurons act as a neural substrate for arousals from SWS. These neurons become active during arousal from SWS and their photoactivation can induce arousal from SWS. Moreover, we show that these neurons are influenced by glutamatergic neurons in the brainstem, the activity of which increases during auditory-induced arousals. These results suggest that this brainstem-MD pathway can mediate wakefulness from SWS.


Assuntos
Sono de Ondas Lentas , Sono , Animais , Sono/fisiologia , Nível de Alerta/fisiologia , Tálamo/fisiologia , Vigília/fisiologia , Tronco Encefálico
2.
Mol Brain ; 11(1): 33, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880005

RESUMO

Drowsiness is an awake state with increased sleep drive, yet the neural correlates and underlying mechanisms remains unclear. Here, we established a mouse model of drowsiness, where mice are fasted for 1 day and then allowed to overeat high-fat food (to promote sleep) while positioned in an open-field box (to promote vigilance). They fall into a long-lasting drowsy state, as reflected by repeated and open-eyed nodding of the head while in a standing position. Simultaneous recording of electroencephalogram (EEG) and neck electromyogram (EMG) readouts revealed that this drowsy state including nodding state had multiple stages in terms of the relationship between the level of vigilance and head movement: delta oscillations decreased in power prior to the head-nodding period and increased during the non-nodding period. Cav3.1-knockout mice, which have reduced delta oscillations, showed frequent head nodding with reduced duration of nodding episodes compared to wild-type mice. This suggests that the balance of drive is tilted in favor of wakefulness, likely due to their previously proposed decrease in sleep-promoting functions. Our findings indicate that delta oscillations play a dominant role in controlling vigilance dynamics during sleep/wake competition and that our novel mouse model may be useful for studying drowsiness and related neurological disorders.


Assuntos
Comportamento , Dieta , Fases do Sono/fisiologia , Vigília/fisiologia , Animais , Canais de Cálcio Tipo T/metabolismo , Ritmo Delta , Eletroencefalografia , Eletromiografia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais
3.
J Neurosci ; 31(11): 4063-73, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411648

RESUMO

Hypoxic damage to the prefrontal cortex (PFC) has been implicated in the frontal lobe dysfunction found in various neuropsychiatric disorders. The underlying subcortical mechanisms, however, have not been well explored. In this study, we induced a PFC-specific hypoxia-like damage by cobalt-wire implantation to demonstrate that the role of the mediodorsal thalamus (MD) is critical for the development of frontal lobe dysfunction, including frontal lobe-specific seizures and abnormal hyperactivity. Before the onset of these abnormalities, the cross talk between the MD and PFC nuclei at theta frequencies was enhanced. During the theta frequency interactions, burst spikes, known to depend on T-type Ca(2+) channels, were increased in MD neurons. In vivo knockout or knockdown of the T-type Ca(2+) channel gene (Ca(V)3.1) in the MD substantially reduced the theta frequency MD-PFC cross talk, frontal lobe-specific seizures, and locomotor hyperactivity in this model. These results suggest a two-step model of prefrontal dysfunction in which the response to a hypoxic lesion in the PFC results in abnormal thalamocortical feedback driven by thalamic T-type Ca(2+) channels, which, in turn, leads to the onset of neurological and behavioral abnormalities. This study provides valuable insights into preventing the development of neuropsychiatric disorders arising from irreversible PFC damage.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Lobo Frontal/lesões , Lobo Frontal/fisiopatologia , Neurônios/metabolismo , Tálamo/metabolismo , Análise de Variância , Animais , Western Blotting , Condicionamento Clássico/fisiologia , Eletrofisiologia , Medo , Feminino , Corpos Estranhos , Lobo Frontal/metabolismo , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA