Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(48): 19757-19766, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38050427

RESUMO

Sb2Se3, consisting of one-dimensional (Sb4Se6)n nanoribbons has drawn attention as an intriguing light absorber from the photovoltaics (PVs) research community. However, further research is required on the performance-limiting factors in Sb2Se3 PVs. In this study, we investigated the charge carrier behavior in Sb2Se3 PVs by impedance spectroscopy (IS) under light illumination. (Sb4Se6)n nanoribbons with two different orientations were used to investigate the effect of crystal orientation on the device performance. Regardless of the (Sb4Se6)n orientation, negative capacitance was observed at forward bias, representing a recombination pathway at the TiO2/Sb2Se3 interface. A comparison of the recombination resistances and lifetimes of two different Sb2Se3 PVs showed that a better interface could be formed by placing the (Sb4Se6)n ribbons parallel to the TiO2 layer. Based on these observations, an ideal structure of the Sb2Se3/TiO2 interface is proposed, which will enhance the performance of Sb2Se3 PVs toward its theoretical limit.

2.
Nanomicro Lett ; 15(1): 191, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532956

RESUMO

Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm-3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g-1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.

3.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571194

RESUMO

Attempts have been made to introduce microstructures or wrinkles into the elastomer surface to increase the sensitivity of the elastomer. However, the disadvantage of this method is that when a force is applied to the pressure sensor, the contact area with the electrode is changed and the linear response characteristic of the pressure sensor is reduced. The biggest advantage of the capacitive pressure sensor using an elastomer is that it is a characteristic that changes linearly according to the change in pressure, so it is not suitable to introduce microstructures or wrinkles into the elastomer surface. A method of increasing the sensitivity of the capacitive pressure sensor while maintaining the linearity according to the pressure change is proposed. We proposed a bubble-popping PDMS by creating pores inside the elastomer. The sensitivity of the pressure sensor made of the bubble-popping PDMS was approximately 4.6 times better than that of the pressure sensor without pores, and the pressure sensor made of the bubble-popping PDMS showed a high linear response characteristic to the external pressure change. These results show that our pressure sensor can be used to detect applied pressures or contact forces of e-skins.

4.
Adv Mater ; 35(32): e2303553, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199707

RESUMO

Magnetoelectric (ME) film composites consisting of piezoelectric and magnetostrictive materials are promising candidates for application in magnetic field sensors, energy harvesters, and ME antennas. Conventionally, high-temperature annealing is required to crystallize piezoelectric films, restricting the use of heat-sensitive magnetostrictive substrates that enhance ME coupling. Herein, a synergetic approach is demonstrated for fabricating ME film composites that combines aerosol deposition and instantaneous thermal treatment based on intense pulsed light (IPL) radiation to form piezoelectric Pb(Zr,Ti)O3 (PZT) thick films on an amorphous Metglas substrate. IPL rapidly anneals PZT films within a few milliseconds without damaging the underlying Metglas. To optimize the IPL irradiation conditions, the temperature distribution inside the PZT/Metglas film is determined using transient photothermal computational simulation. The PZT/Metglas films are annealed using different IPL pulse durations to determine the structure-property relationship. IPL treatment results in an enhanced crystallinity of the PZT, thus improving the dielectric, piezoelectric, and ME properties of the composite films. An ultrahigh off-resonance ME coupling (≈20 V cm-1  Oe-1 ) is obtained for the PZT/Metglas film that is IPL annealed at a pulse width of 0.75 ms (an order of magnitude higher than that reported for other ME films), confirming the potential for next-generation, miniaturized, and high-performance ME devices.

5.
Adv Mater ; 34(34): e2203992, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35773228

RESUMO

A novel strategy for robust and ultrathin (<1 µm) multilayered protective structures to address uncontrolled Lithium (Li) dendrite growth at Li-metal battery anodes is reported. Synergetic interaction among Ag nanoparticles (Ag NPs), reduced graphene oxide (rGO) films, and self-assembled block-copolymer (BCP) layers enables effective suppression of dendritic Li growth. While Ag NP layer confines the growth of Li metal underneath the rGO layer, BCP layer facilitates the fast and uniformly distributed flux of Li-ion transport and mechanically supports the rGO layer. Notably, highly aligned nanochannels with ≈15 nm diameter and ≈600 nm length scale interpenetrating within the BCP layer offer reversible well-defined pathways for Li-ion transport. Dramatic stress relaxation with the multilayered structure is confirmed via structural simulation considering the mechanical stress induced by filamentary-growth of Li metal. Li-metal anodes modified with the protective layer well-maintain stable reaction interfaces with limited solid-electrolyte interphase formation, yielding outstanding cycling stability and enhanced rate capability, as demonstrated by the full-cells paired with high-loading of LiFePO4 cathodes. The idealized design of multilayer protective layer provides significant insight for advanced Li-metal anodes.

6.
ACS Appl Mater Interfaces ; 13(50): 60425-60432, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902240

RESUMO

Polymer nanofiber-based porous structures ("breathable devices") have been developed for breathable epidermal electrodes, piezoelectric nanogenerators, temperature sensors, and strain sensors, but their applications are limited because increasing the porosity reduces device robustness. Herein, we report an approach to produce ultradurable, cost-effective breathable electronics using a hierarchical metal nanowire network and an optimized photonic sintering process. Photonic sintering significantly reduces the sheet resistance (16.25 to 6.32 Ω sq-1) and is 40% more effective than conventional thermal annealing (sheet resistance: 12.99 Ω sq-1). The mechanical durability of the sintered (648.9 Ω sq-1) sample is notably improved compared to that of the untreated (disconnected) and annealed (19.1 kΩ sq-1) samples after 10,000 deformation cycles at 40% tensile strain. The sintered sample exhibits ∼29 times less change in electrical performance compared to the thermally annealed sample. This approach will lead to the development of affordable and ultradurable commercial breathable electronics.

7.
ACS Appl Mater Interfaces ; 13(33): 40062-40069, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379391

RESUMO

The flashlight annealing process has been widely used in the field of flexible and printed electronics because it can instantly induce chemical and structural modifications over a large area on an electronic functional layer in a subsecond time range. In this study, for the first time, we explored a straightforward method to develop strong self-adhesion on a metal nanowire-based flexible and transparent conductive film via flashlight irradiation. Nanowire interlocking, for strong mechanical bonding at the interface between the nanowires and polyamide film, was achieved by simple hot pressing. Then, by irradiating the nanowire-impregnated film with a flashlight, several events such as interdiffusion and melting of surface polymers could be induced along with morphological changes leading to an increase in the film surface area. As a result, the surface of the fabricated film exhibited strong interfacial interactions while forming intimate contact with the heterogeneous surfaces of other objects, thereby becoming strongly self-adhesive. This readily achievable, self-attachable, flexible, and transparent electrode allowed the self-interconnection of a light-emitting diode chip, and it was also compatible for various applications, such as defogging windows and transparent organic light-emitting diodes.

8.
ACS Appl Mater Interfaces ; 13(13): 15205-15215, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769779

RESUMO

Si has attracted considerable interest as a promising anode material for next-generation Li-ion batteries owing to its outstanding specific capacity. However, the commercialization of Si anodes has been consistently limited by severe instabilities originating from their significant volume change (approximately 300%) during the charge-discharge process. Herein, we introduce an ultrafast processing strategy of controlled multi-pulse flash irradiation for stabilizing the Si anode by modifying its physical properties in a spatially stratified manner. We first provide a comprehensive characterization of the interactions between the anode materials and the flash irradiation, such as the condensation and carbonization of binders, sintering, and surface oxidation of the Si particles under various irradiation conditions (e.g., flash intensity and irradiation period). Then, we suggest an effective route for achieving superior physical properties for Si anodes, such as robust mechanical stability, high electrical conductivity, and fast electrolyte absorption, via precise adjustment of the flash irradiation. Finally, we demonstrate flash-irradiated Si anodes that exhibit improved cycling stability and rate capability without requiring costly synthetic functional binders or delicately designed nanomaterials. This work proposes a cost-effective technique for enhancing the performance of battery electrodes by substituting conventional long-term thermal treatment with ultrafast flash irradiation.

9.
Nanoscale ; 12(4): 2366-2373, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31960872

RESUMO

Development of electronic devices on ultrathin flexible plastic substrates is of great value in terms of portability, cost reduction, and mechanical flexibility. However, because thin plastic substrates with low heat capacity can be more easily damaged by thermal energy, their use is limited. Highly flexible nanowire (NW) transparent conductive electrodes on ultrathin (∼10 µm) low cost polyethylene terephthalate (PET) substrates are fabricated. The control of intense pulsed light (IPL) irradiation process parameters to induce NW welding for maximum conductivity and minimal thermal damage of the PET substrate is explored. For this purpose, trends in temperature variation of NW thin films irradiated by IPL under various operating conditions are numerically analyzed using commercial software. Simulations indicate that irradiating light operated at a higher voltage and for a shorter time, and use of multiple pulses of low frequency can reduce thermal deformation of the PET substrate. Furthermore, we experimentally confirm that NW transparent electrodes can be successfully fabricated with less thermal deformation of the ultrathin plastic substrate when light is irradiated under well-controlled conditions derived from the simulation. The highly flexible NW transparent conducting electrode exhibits excellent mechanical flexibility to withstand severe deformation and can be successfully implemented in flexible organic light-emitting diodes (OLEDs).

10.
ACS Appl Mater Interfaces ; 11(13): 12622-12631, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855933

RESUMO

A stretchable conductor is a critical prerequisite to achieve various forms of stretchable electronics. In particular, directly printable stretchable conductors have gathered considerable attention with recent growing interest in a variety of large-area, deformable electronics. In this study, we have developed a chemical pathway of incorporating a surfactant with a moderate hydrophilic-lipophilic balance in formulating composite pastes for printed stretchable conductors, with a possibility of a vertically stackable, three-dimensional printing process. We demonstrate that the addition of a nonionic surfactant, sorbitane monooleate (commonly called SPAN 80) in Ag flake-based composite pastes, allows a critical reduction in resistance variation under an external strain. The four-layer stacked, surfactant-added composite conductors show a resistance variation of merely 1.6 at a strain of 0.6 and excellent cycling durability over 1000 cycles. The effectiveness of the methods suggested in this study is demonstrated with basic light-emitting diode circuits and the thermal heating characteristics of stretchable conductors.

11.
ACS Appl Mater Interfaces ; 11(16): 14882-14891, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30919616

RESUMO

Conventional printing technologies such as inkjet, screen, and gravure printing have been used to fabricate patterns of silver nanowire (AgNW) transparent conducting electrodes (TCEs) for a variety of electronic devices. However, they have critical limitations in achieving micrometer-scale fine line width, uniform thickness, sharp line edge, and pattering of various shapes. Moreover, the optical and electrical properties of printed AgNW patterns do not satisfy the performance required by flexible integrated electronic devices. Here, we report a high-resolution and large-area patterning of highly conductive AgNW TCEs by reverse offset printing and intense pulsed light (IPL) irradiation for flexible integrated electronic devices. A conductive AgNW ink for reverse offset printing is prepared by carefully adjusting the composition of AgNW content, solvents, surface energy modifiers, and organic binders for the first time. High-quality and high-resolution AgNW micropatterns with various shapes and line widths are successfully achieved on a large-area plastic substrate (120 × 100 mm2) by optimizing the process parameters of reverse offset printing. The reverse offset printed AgNW micropatterns exhibit superior fine line widths (up to 6 µm) and excellent pattern quality such as sharp line edge, fine line spacing, effective wire junction connection, and smooth film roughness. They are post-processed with IPL irradiation, thereby realizing excellent optical, electrical, and mechanical properties. Furthermore, flexible OLEDs and heaters based on reverse offset printed AgNW micropatterns are successfully fabricated and characterized, demonstrating the potential use of the reverse offset printing for the conductive AgNW ink.

12.
Small ; 14(21): e1800676, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665206

RESUMO

A simple route to fabricate defect-free Ag-nanoparticle-carbon-nanotube composite-based high-resolution mesh flexible transparent conducting electrodes (FTCEs) is explored. In the selective photonic sintering-based patterning process, a highly soft rubber or thin plastic substrate is utilized to achieve close and uniform contact between the composite layer and photomask, with which uniform light irradiation can be obtained with diminished light diffraction. This well-controlled process results in developing a fine and uniform mesh pattern (≈12 µm). The mesh patternability is confirmed to be dependent on heat distribution in the selectively light-irradiated film and the pattern design for FTCE could be adopted for more precise patterns with desired performance. Moreover, using a very thin substrate could allow the mesh to be positioned closer to the strain-free neutral mechanical plane. Due to strong interfacial adhesion between the mesh pattern and substrate, the mesh FTCE could tolerate severe mechanical deformation without performance degradation. It is demonstrated that a transparent heater with fine mesh patterns on thin substrate can maintain stability after 100 repeated washing test cycles in which a variety of stress situations occurring in combination. The presented highly durable FTCE and simple fabrication processes may be widely adoptable for various flexible, large-area, and wearable optoelectronic devices.

13.
Nanoscale ; 10(17): 7890-7897, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29560480

RESUMO

Recently, the demand for stretchable strain sensors used for detecting human motion is rapidly increasing. This paper proposes high-performance strain sensors based on Ag flake/Ag nanocrystal (NC) hybrid materials incorporated into a polydimethylsiloxane (PDMS) elastomer. The addition of Ag NCs into an Ag flake network enhances the electrical conductivity and sensitivity of the strain sensors. The intense localized heating of Ag flakes/NCs is induced by intense pulsed light (IPL) irradiation, to achieve efficient sintering of the Ag NCs within a second, without damaging the PDMS matrix. This leads to significant improvement in the sensor sensitivity. Our strain sensors are highly stretchable (maximum strain = 80%) and sensitive (gauge factor = 7.1) with high mechanical stability over 10 000 stretching cycles under 50% strain. For practical demonstration, the fabrication of a smart glove for detecting the motions of fingers and a sports band for measuring the applied arm strength is also presented. This study provides an effective method for fabricating elastomer-based high-performance stretchable electronics.


Assuntos
Elastômeros , Movimento , Nanopartículas , Prata , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Fótons
14.
ACS Appl Mater Interfaces ; 10(1): 1059-1066, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29226669

RESUMO

In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq-1 under an optical energy dose of 1.5 J cm-2. In addition, they exhibit highly stable sheet resistances (ΔR/R0 < 1) even after 30 days of aging at 85 °C and 85% relative humidity. Further, a flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

15.
ACS Appl Mater Interfaces ; 9(7): 6163-6170, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28146354

RESUMO

Recently, highly flexible conductive features have been widely demanded for the development of various electronic applications, such as foldable displays, deformable lighting, disposable sensors, and flexible batteries. Herein, we report for the first time a selective photonic sintering-derived, highly reliable patterning approach for creating extremely flexible carbon nanotube (CNT)/silver nanoparticle (Ag NP) composite electrodes that can tolerate severe bending (20 000 cycles at a bending radius of 1 mm). The incorporation of CNTs into a Ag NP film can enhance not only the mechanical stability of electrodes but also the photonic-sintering efficiency when the composite is irradiated by intense pulsed light (IPL). Composite electrodes were patterned on various plastic substrates by a three-step process comprising coating, selective IPL irradiation, and wiping. A composite film selectively exposed to IPL could not be easily wiped from the substrate, because interfusion induced strong adhesion to the underlying polymer substrate. In contrast, a nonirradiated film adhered weakly to the substrate and was easily removed, enabling highly flexible patterned electrodes. The potential of our flexible electrode patterns was clearly demonstrated by fabricating a light-emitting diode circuit and a flexible transparent heater with unimpaired functionality under bending, rolling, and folding.

16.
ACS Nano ; 10(8): 7847-54, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27434639

RESUMO

Simple, low-cost and scalable patterning methods for Cu nanowire (NW)-based flexible transparent conducting electrodes (FTCEs) are essential for the widespread use of Cu NW FTCEs in numerous flexible optoelectronic devices, wearable devices, and electronic skins. In this paper, continuous patterning for Cu NW FTCEs via a combination of selective intense pulsed light (IPL) and roll-to-roll (R2R) wiping process was explored. The development of continuous R2R patterning could be achieved because there was significant difference in adhesion properties between NWs and substrates depending on whether Cu NW coated area was irradiated by IPL or not. Using a custom-built, R2R-based wiping apparatus, it was confirmed that nonirradiated NWs could be clearly removed out without any damage on irradiated NWs strongly adhered to the substrate, resulting in continuous production of low-cost Cu NW FTCE patterns. In addition, the variations in microscale pattern size by varying IPL process parameters/the mask aperture sizes were investigated, and possible factors affecting on developed pattern size were meticulously examined. Finally, the successful implementation of the patterned Cu NW FTCEs into a phosphorescent organic light-emitting diode (PhOLED) and a flexible transparent conductive heater (TCH) were demonstrated, verifying the applicability of the patterned FTCEs. It is believed that our study is the key step toward realizing the practical use of NW FTCEs in various flexible electronic devices.

17.
Nanoscale ; 8(16): 8995-9003, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27074548

RESUMO

Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.

18.
Nanoscale ; 7(41): 17195-210, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26439751

RESUMO

Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.

19.
ACS Appl Mater Interfaces ; 7(40): 22570-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26394216

RESUMO

A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.

20.
ACS Appl Mater Interfaces ; 6(20): 17740-7, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25265601

RESUMO

Recently, environmental-friendly, solution-processed, flexible Cu(In,Ga)(S,Se)2 devices have gained significant interest, primarily because the solution deposition method enables large-scale and low-cost production of photovoltaics, and a flexible substrate can be implemented on uneven surfaces in various applications. Here, we suggest a novel green-chemistry aqueous ink that is readily achievable through the incorporation of molecular precursors in an aqueous medium. A copper formate precursor was introduced to lower the fabrication temperature, provide compatibility with a polyimide plastic substrate, and allow for high photovoltaic performance. Through a comparative spectroscopic study on temperature-dependent chemical/crystal structural evolution, the chemical role of copper formate was elucidated, which led to the chalcopyrite framework that was appropriate to low-temperature annealed Cu(In,Ga)S2 absorber layers at 400 °C. This Cu(In,Ga)S2 solar cell exhibited a power conversion efficiency of 7.04% on a rigid substrate and 5.60% on a polymeric substrate. Our cell on the polymeric substrate also demonstrated both acceptable mechanical flexibility and durability throughout a repeated bending test of 200 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...