Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38861662

RESUMO

BACKGROUND: The cause of kidney failure is unknown in approximately 10% of patients with stage 5 chronic kidney disease (CKD). For those who first present to nephrology care with kidney failure, standard investigations of serology, imaging, urinalysis and kidney biopsy are limited differentiators of etiology. We aimed to determine the diagnostic utility of whole-genome sequencing (WGS) with analysis of a broad kidney gene panel in patients with kidney failure of unknown cause. METHODS: We prospectively recruited 100 participants who reached CKD stage 5 at 50 years of age and had an unknown cause of kidney failure after standard investigation. Clinically-accredited WGS was performed in this national cohort after genetic counselling. The primary analysis was targeted to 388 kidney-related genes with second-tier genome-wide and mitochondrial analysis. RESULTS: The cohort was 61% male and the average age of participants at stage 5 CKD was 32 years (9 months to 50 years). A genetic diagnosis was made in 25% of participants. Disease-causing variants were identified across autosomal dominant tubulointerstitial kidney disease (6), glomerular disorders (4), ciliopathies (3), tubular disorders (2), Alport syndrome (4) and mitochondrial disease (1). Most diagnoses (80%) were in autosomal dominant, X-linked or mitochondrial conditions (UMOD; COL4A5; INF2; CLCN5; TRPC6; COL4A4; EYA1; HNF1B; WT1; NBEA; m.3243A>G). Patients with a family history of CKD were more likely to have a positive result (OR 3.29, 95% CI 1.10-11.29). Thirteen percent of participants without a CKD family history had a positive result. In those who first presented in stage 5 CKD, WGS with broad analysis of a curated kidney-disease gene panel was diagnostically more informative than kidney biopsy, with biopsy being inconclusive in 24 of 25 participants. CONCLUSIONS: In this prospectively ascertained Australian cohort, we identified a genetic diagnosis in 25% of patients with kidney failure of unknown cause.

2.
Genes (Basel) ; 13(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36292688

RESUMO

The choices of participants in nephrology research genomics studies about receiving additional findings (AFs) are unclear as are participant factors that might influence those choices. Methods: Participant choices and factors potentially impacting decisions about AFs were examined in an Australian study applying research genomic testing following uninformative diagnostic genetic testing for suspected monogenic kidney disease. Results: 93% of participants (195/210) chose to receive potential AFs. There were no statistically significant differences between those consenting to receive AFs or not in terms of gender (p = 0.97), median age (p = 0.56), being personally affected by the inherited kidney disease of interest (p = 0.38), or by the inheritance pattern (p = 0.12-0.19). Participants were more likely to choose not to receive AFs if the family proband presented in adulthood (p = 0.01), if there was family history of another genetic disorder (p = 0.01), and where the consent process was undertaken by an adult nephrologist (p = 0.01). Conclusion: The majority of participants in this nephrology research genomics study chose to receive potential AFs. Younger age of the family proband, family history of an alternate genetic disorder, and consenting by some multidisciplinary team members might impact upon participant choices.


Assuntos
Nefropatias , Nefrologia , Adulto , Humanos , Austrália , Genômica , Testes Genéticos , Nefropatias/genética
3.
Front Med (Lausanne) ; 9: 891223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721054

RESUMO

Early identification of genetic kidney disease allows personalised management, clarification of risk for relatives, and guidance for family planning. Genetic disease is underdiagnosed, and recognition of genetic disease is particularly challenging in patients with kidney failure without distinguishing diagnostic features. To address this challenge, the primary aim of this study is to determine the proportion of genetic diagnoses amongst patients with kidney failure of unknown aetiology, using whole genome sequencing (WGS). A cohort of up to 100 Australian patients with kidney failure of unknown aetiology, with onset <50 years old and approved by a panel of study investigators will be recruited via 18 centres nationally. Clinically accredited WGS will be undertaken with analysis targeted to a priority list of ∼388 genes associated with genetic kidney disease. The primary outcome will be the proportion of patients who receive a molecular diagnosis (diagnostic rate) via WGS compared with usual -care (no further diagnostic investigation). Participant surveys will be undertaken at consent, after test result return and 1 year subsequently. Where there is no or an uncertain diagnosis, future research genomics will be considered to identify candidate genes and new pathogenic variants in known genes. All results will be relayed to participants via the recruiting clinician and/or kidney genetics clinic. The study is ethically approved (HREC/16/MH/251) with local site governance approvals in place. The future results of this study will be disseminated and inform practical understanding of the potential monogenic contribution to kidney failure of unknown aetiology. These findings are anticipated to impact clinical practice and healthcare policy. Study Registration: [https://dora.health.qld.gov.au], identifier [HREC/16/MH/251].

4.
Bioessays ; 44(5): e2100270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229908

RESUMO

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Assuntos
Fibronectinas , Distrofias Musculares , Distroglicanas/genética , Distroglicanas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilação , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo
5.
Adv Mater Technol ; : 2200965, 2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36718387

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biosensors have captured more attention than the conventional methodologies for SARS-CoV-2 detection due to having cost-effective platforms and fast detection. However, these reported SARS-CoV-2 biosensors suffer from drawbacks including issues in detection sensitivity, degradation of biomaterials on the sensor's surface, and incapability to reuse the biosensors. To overcome these shortcomings, molecularly imprinted polymer nanoparticles (nanoMIPs) incorporated conductometric biosensor for highly accurate, rapid, and selective detection of two model SARS-CoV-2 proteins: (i) receptor binding domain (RBD) of the spike (S) glycoprotein and (ii) full length trimeric spike protein are introduced. In addition, these biosensors successfully responded to several other SARS-CoV-2 RBD spike protein variants including Alpha, Beta, Gamma, and Delta. Our conductometric biosensor selectively detects the two model proteins and SARS-CoV-2 RBD spike protein variant samples in real-time with sensitivity to a detection limit of 7 pg mL-1 within 10 min of sample incubation. A battery-free, wireless near-field communication (NFC) interface is incorporated with the biosensor for fast and contactless detection of SARS-CoV-2 variants. The smartphone enabled real-time detection and on-screen rapid result for SARS-CoV-2 variants can curve the outbreak due to its ability to alert the user to infection in real time.

6.
Nature ; 591(7849): 281-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568815

RESUMO

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Assuntos
Macrófagos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos/citologia , Nicotinamida Fosforribosiltransferase/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/citologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fator de Transcrição PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneração/fisiologia , Análise de Célula Única , Peixe-Zebra/imunologia
7.
Clin Infect Dis ; 71(9): e478-e486, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32060523

RESUMO

BACKGROUND: Third-generation cephalosporins (3GC) remain the first-choice empiric antibiotic for severe infection in many sub-Saharan African hospitals. In Malawi, the limited availability of alternatives means that strategies to prevent the spread of 3GC resistance are imperative; however, suitable approaches to antimicrobial stewardship (AMS) in low-income settings are not well studied. METHODS: We introduced an AMS intervention to Queen Elizabeth Central Hospital in Blantyre. The intervention consisted of a prescribing application for smartphones and regular point-prevalence surveys with prescriber feedback. We evaluate the effects of the intervention on 3GC usage and on the cost of providing antibiotics. Using a thematic analysis of semi-structured interviews and participant observations, we additionally evaluate the acceptability of the stewardship program. RESULTS: The proportion of antibiotic prescriptions for a 3GC reduced from 193/241 (80.1%) to 177/330 (53.6%; percentage decrease, 26.5%; 95% confidence interval, 18.7-34.1) with no change in the case-fatality rate. The cost analysis estimated an annual savings of US$15 000. Qualitative research revealed trust in the guideline and found that its accessibility through smartphones helpful to guide clinical decisions. Operational health-system barriers and hierarchal clinical relationships lead to continued reliance on 3GC. CONCLUSIONS: We report the successful introduction of an antimicrobial stewardship approach in Malawi. By focusing on pragmatic interventions and simple aims, we demonstrate the feasibility, acceptability, and cost savings of a stewardship program where resources are limited. In doing so, we provide a suitable starting point for expansions of AMS interventions in this and other low-income settings.


Assuntos
Gestão de Antimicrobianos , Adulto , Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Hospitais Urbanos , Humanos , Pacientes Internados , Malaui
8.
Hum Mol Genet ; 28(9): 1403-1413, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566586

RESUMO

Deficiency of muscle basement membrane (MBM) component laminin-α2 leads to muscular dystrophy congenital type 1A (MDC1A), a currently untreatable myopathy. Laminin--α2 has two main binding partners within the MBM, dystroglycan and integrin. Integrins coordinate both cell adhesion and signalling; however, there is little mechanistic insight into integrin's function at the MBM. In order to study integrin's role in basement membrane development and how this relates to the MBM's capacity to handle force, an itgß1.b-/- zebrafish line was created. Histological examination revealed increased extracellular matrix (ECM) deposition at the MBM in the itgß1.b-/- fish when compared with controls. Surprisingly, both laminin and collagen proteins were found to be increased in expression at the MBM of the itgß1.b-/- larvae when compared with controls. This increase in ECM components resulted in a decrease in myotomal elasticity as determined by novel passive force analyses. To determine if it was possible to control ECM deposition at the MBM by manipulating integrin activity, RGD peptide, a potent inhibitor of integrin-ß1, was injected into a zebrafish model of MDC1A. As postulated an increase in laminin and collagen was observed in the lama2-/- mutant MBM. Importantly, there was also an improvement in fibre stability at the MBM, judged by a reduction in fibre pathology. These results therefore show that blocking ITGß1 signalling increases ECM deposition at the MBM, a process that could be potentially exploited for treatment of MDC1A.


Assuntos
Integrina beta1/metabolismo , Laminina/deficiência , Oligopeptídeos/farmacologia , Animais , Membrana Basal/metabolismo , Biomarcadores , Colágeno/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Loci Gênicos , Imuno-Histoquímica , Integrina beta1/genética , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Fenótipo , Estabilidade Proteica/efeitos dos fármacos
9.
Zebrafish ; 15(4): 420-424, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29381425

RESUMO

Muscle fiber detachment from myoseptal boundaries is a common finding in zebrafish models of muscular dystrophies. In some instances, there is a weakening of the interaction between muscle fiber and myosepta, which is yet to manifest as a fiber detachment phenotype. Therefore, to push the fiber detachment of muscle, mutant fish but not their wild-type siblings, beyond their binding threshold, a series of small electrical pulses can be applied to the larvae to create a maximal force contraction and ultimately fiber detachment. To do this, we built a digital pulse generator which delivers four 8 ms 30 V pulses in quick succession, and it has the advantage over older analog approaches to pulse generation because it improves accuracy and is appreciably less expensive. Our pulse generator significantly increases fiber detachment in the laminin-α2 deficient, congenital muscular dystrophy type 1a (MDC1a) model lama2-/- fish when compared with controls.


Assuntos
Estimulação Elétrica/efeitos adversos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/patologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Fontes de Energia Bioelétrica , Laminina/fisiologia , Larva/fisiologia , Larva/efeitos da radiação , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos da radiação , Distrofia Muscular Animal/metabolismo , Mutação , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
J Comp Neurol ; 525(8): 1962-1979, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177524

RESUMO

The Nuclear receptor subfamily 4 group A member 2 (Nr4a2) is crucial for the formation or maintenance of dopaminergic neurons in the central nervous system including the retina, where dopaminergic amacrine cells contribute to visual function. Little is known about which cells express Nr4a2 at which developmental stage. Furthermore, whether Nr4a2 functions in combination with other genes is poorly understood. Thus, we generated a novel transgenic to visualize Nr4a2 expression in vivo during zebrafish retinogenesis. A 4.1 kb fragment of the nr4a2a promoter was used to drive green fluorescent protein expression in this Tg(nr4a2a:eGFP) line. In situ hybridization showed that transgene expression follows endogenous RNA expression at a cellular level. Temporal expression and lineages were quantified using in vivo time-lapse imaging in embryos. Nr4a2 expressing retinal subtypes were characterized immunohistochemically. Nr4a2a:eGFP labeled multiple neuron subtypes including 24.5% of all amacrine interneurons. Nr4a2a:eGFP labels all tyrosine hydroxylase labeled dopaminergic amacrine cells, and other nondopaminergic GABAergic amacrine populations. Nr4a2a:eGFP is confined to a specific progenitor lineage identified by sequential expression of the bhlh transcription factor Atonal7 (Atoh7) and Pancreas transcription factor 1a (Ptf1a), and labels postmitotic postmigratory amacrine cells. Thus, developmental Nr4a2a expression indicates a role during late differentiation of specific amacrine interneurons. Tg(nr4a2a:eGFP) is an early marker of distinct neurons including dopaminergic amacrine cells. It can be utilized to assess consequences of gene manipulations and understand whether Nr4a2 only carries out its role in the presence of specific coexpressed genes. This will allow Nr4a2 use to be refined for regenerative approaches.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Neurogênese/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Transcriptoma , Peixe-Zebra
11.
Nature ; 535(7613): 542-6, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27437584

RESUMO

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signaling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton. The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs. Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution. The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction. Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition. We further demonstrate that apical-fold inducing cells are progressively lost during gnathostome evolution;the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.


Assuntos
Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Animais , Evolução Biológica , Linhagem da Célula , Ectoderma/citologia , Feminino , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Somitos/citologia
12.
Injury ; 47(3): 539-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26803697

RESUMO

BACKGROUND: Intramuscular diaphragmatic stimulation using an abdominal laparoscopic approach has been proposed as a safer alternative to traditional phrenic nerve stimulation. It has also been suggested that early implementation of diaphragmatic pacing may prevent diaphragm atrophy and lead to earlier ventilator independence. The aim of this study was therefore to systematically review the safety and effectiveness of intramuscular diaphragmatic stimulators in the treatment of patients with traumatic high cervical injuries resulting in long-term ventilator dependence, with particular emphasis on the affect of timing of insertion of such stimulators. METHODS: The Cochrane database and PubMed were searched between January 2000 and June 2015. Reference lists of selected papers were also reviewed. The inclusion criteria used to select from the pool of eligible studies were: (1) reported on adult patients with traumatic high cervical injury, who were ventilator-dependant, (2) patients underwent intramuscular diaphragmatic stimulation, and (3) commented on safety and/or effectiveness. RESULTS: 12 articles were included in the review. Reported safety issues post insertion of intramuscular electrodes included pneumothorax, infection, and interaction with pre-existing cardiac pacemaker. Only one procedural failure was reported. The percentage of patients reported as independent of ventilatory support post procedure ranged between 40% and 72.2%. The mean delay of insertion ranged from 40 days to 9.7 years; of note the study with the average shortest delay in insertion reported the greatest percentage of fully weaned patients. CONCLUSIONS: Although evidence for intramuscular diaphragmatic stimulation in patients with high cervical injuries and ventilator dependent respiratory failure is currently limited, the technique appears to be safe and effective. Earlier implantation of such devices does not appear to be associated with greater surgical risk, and may be more effective. Further high quality studies are warranted to investigate the impact of delay of insertion on ventilator weaning.


Assuntos
Diafragma/inervação , Diafragma/fisiologia , Terapia por Estimulação Elétrica , Nervo Frênico/lesões , Insuficiência Respiratória/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Terapia Combinada , Diafragma/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Humanos , Guias de Prática Clínica como Assunto , Respiração Artificial , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Desmame do Respirador
13.
Hum Mol Genet ; 20(24): 4879-90, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21926082

RESUMO

Fukutin and fukutin-related protein (FKRP) are involved in the glycosylation of α-dystroglycan, a key receptor for basement membrane proteins. Aberrant α-dystroglycan glycosylation leads to a broad spectrum of disorders, ranging from limb girdle muscular dystrophy to Walker-Warburg syndrome. This is the first study investigating a role of fukutin and FKRP-mediated glycosylation in angiogenesis. Transgenic zebrafish expressing enhanced green fluorescent protein in blood vessels were treated with morpholino antisense oligonucleotides that blocked the expression of fukutin, FKRP and dystroglycan. All morphant fish showed muscle damage and vascular abnormalities at day 1 post-fertilization. Intersegmental vessels of somites failed to reach the dorsal longitudinal anastomosis and in more severe phenotypes retracted further or were in some cases even completely missing. In contrast, the eye vasculature was distorted in both fukutin and FKRP morphants, but not in dystroglycan morphants or control fish. The eye size was also smaller in the fukutin and FKRP morphants when compared with dystroglycan knockdown fish and controls. In general, the fukutin morphant fish had the most severe skeletal muscle and eye phenotype. Our findings suggest that fukutin and FKRP have functions that affect ocular development in zebrafish independently of dystroglycan. Despite anecdotal reports about vascular abnormalities in patients affected by dystroglycanopathies, the clinical relevance of such lesions remains unclear and should be subject to further review and investigations.


Assuntos
Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/embriologia , Glicosiltransferases/deficiência , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Anticorpos/imunologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Distroglicanas/metabolismo , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Olho/irrigação sanguínea , Olho/efeitos dos fármacos , Olho/patologia , Glicosiltransferases/metabolismo , Modelos Animais , Morfolinos/farmacologia , Faloidina/metabolismo , Proteína Proto-Oncogênica c-fli-1 , Somitos/anormalidades , Somitos/irrigação sanguínea , Somitos/efeitos dos fármacos , Somitos/embriologia , Coloração e Rotulagem , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Avian Pathol ; 37(5): 527-35, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18798029

RESUMO

In broiler breeder flocks in one broiler integration in Hungary, a new syndrome appeared in January 2005 with initially four successive post-peak flocks experiencing significant decreases in egg production. Clinically birds became depressed and there was a small increase in the mortality rate. Postmortem examinations revealed enlarged livers in up to 19% of birds dying, and enlarged spleens in some. Also observed were birds with either clotted blood or serosanguineous fluid in the abdomen and subcapsular haemorrhages of the liver. Histopathology and polymerase chain reaction excluded tumours and the presence of common tumour-associated viruses. Chronic bacterial infections (especially causing hepatitis, peritonitis and airsacculitis) were common but many enlarged livers had no obvious bacterial involvement. After a 9-month period during which a majority of flocks became affected, no newly affected flocks occurred. Investigations showed that all tested affected flocks were seropositive in the big liver and spleen (BLS) Agar Gel Immunodiffusion test. Subsequent flocks without post-peak egg-production drops were shown to be seronegative in the BLS AGID test, as were all the parent flocks contributing to the affected flocks. Liver samples and cloacal swabs were positive by polymerase chain reaction (aHEV helicase target), and calicivirus-like particles were demonstrated in bile samples from affected birds. These observations are similar to hepatitis-splenomegaly syndrome as described in North America and BLS syndrome as described in Australia. Histopathological features were a non-specific chronic hepatitis similar to those described in BLS and hepatitis-splenomegaly syndrome. Immunohistochemistry using a BLS-specific monoclonal antibody confirmed the presence of avian hepatitis E virus antigen in livers and spleen.


Assuntos
Galinhas/virologia , Hepatite Viral Animal/virologia , Hepevirus/isolamento & purificação , Doenças das Aves Domésticas/virologia , Infecções por Vírus de RNA/veterinária , Animais , Feminino , Hepatite Viral Animal/epidemiologia , Hepatite Viral Animal/patologia , Hungria/epidemiologia , Fígado/patologia , Masculino , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...