Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(52): 21201-7, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23197837

RESUMO

Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.


Assuntos
Conservação dos Recursos Naturais , Cadeia Alimentar , Rios , Animais , Organismos Aquáticos , Arquitetura de Instituições de Saúde , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 108(21): 8708-13, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21558442

RESUMO

Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks.


Assuntos
Salmão/fisiologia , Movimentos da Água , Animais , Previsões , Oceanos e Mares , Densidade Demográfica , Dinâmica Populacional , Sobrevida
3.
Conserv Biol ; 22(1): 36-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18254851

RESUMO

Conservation biologists mostly agree on the need to identify and protect biodiversity below the species level but have not yet resolved the best approach. We addressed 2 issues relevant to this debate. First, we distinguished between the abstract goal of preserving the maximum amount of unique biodiversity and the pragmatic goal of minimizing the loss of ecological goods and services given that further loss of biodiversity seems inevitable. Second, we distinguished between the scientific task of assessing extinction risk and the normative task of choosing targets for protection. We propose that scientific advice on extinction risk be given at the smallest meaningful scale: the elemental conservation unit (ECU). An ECU is a demographically isolated population whose probability of extinction over the time scale of interest (say 100 years) is not substantially affected by natural immigration from other populations. Within this time frame, the loss of an ECU would be irreversible without human intervention. Society's decision to protect an ECU ought to reflect human values that have social, economic, and political dimensions. Scientists can best inform this decision by providing advice about the probability that an ECU will be lost and the ecological and evolutionary consequences of that loss in a form that can be integrated into landscape planning. The ECU approach provides maximum flexibility to decision makers and ensures that the scientific task of assessing extinction risk informs, but remains distinct from, the normative social challenge of setting conservation targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Animais , Bioética , Evolução Biológica , Salmão
4.
Conserv Biol ; 22(2): 351-61, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18241234

RESUMO

The endangered population of sockeye salmon (Oncorhynchus nerka) in Cultus Lake, British Columbia, Canada, migrates through commercial fishing areas along with other, much more abundant sockeye salmon populations, but it is not feasible to selectively harvest only the latter, abundant populations. This situation creates controversial trade-offs between recovery actions and economic revenue. We conducted a Bayesian decision analysis to evaluate options for recovery of Cultus Lake sockeye salmon. We used a stochastic population model that included 2 sources of uncertainty that are often omitted from such analyses: structural uncertainty in the magnitude of a potential Allee effect and implementation uncertainty (the deviation between targets and actual outcomes of management actions). Numerous state-dependent, time-independent management actions meet recovery objectives. These actions prescribe limitations on commercial harvest rates as a function of abundance of Cultus Lake sockeye salmon. We also quantified how much reduction in economic value of commercial harvests of the more abundant sockeye salmon populations would be expected for a given increase in the probability of recovery of the Cultus population. Such results illustrate how Bayesian decision analysis can rank options for dealing with conservation risks and can help inform trade-off discussions among decision makers and among groups that have competing objectives.


Assuntos
Teorema de Bayes , Conservação dos Recursos Naturais/métodos , Pesqueiros/economia , Pesqueiros/métodos , Modelos Teóricos , Salmão/fisiologia , Animais , Colúmbia Britânica , Simulação por Computador , Dinâmica Populacional
5.
Evol Appl ; 1(2): 207-21, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567627

RESUMO

We examine the evolutionary history and speculate about the evolutionary future of three basic life history ecotypes that contribute to the biocomplexity of sockeye salmon (Oncorhynchus nerka). The 'recurrent evolution' (RE) hypothesis claims that the sea/river ecotype is ancestral, a 'straying' form with poorly differentiated (meta)population structure, and that highly structured populations of lake-type sockeye and kokanee have evolved repeatedly in parallel adaptive radiations between recurrent glaciations of the Pleistocene Epoch. Basic premises of this hypothesis are consistent with new, independent evidence from recent surveys of genetic variation in mitochondrial and microsatellite DNA: (1) sockeye salmon are most closely related to pink (O. gorbuscha) and chum (O. keta) salmon with sea-type life histories; (2) the sockeye life history ecotypes exist as polyphyletic lineages within large drainages and geographic regions; (3) the sea/river ecotype exhibits less genetic differentiation among populations than the lake or kokanee ecotypes both within and among drainages; and (4) genetic diversity is typically higher in the sea/river ecotype than in the lake and kokanee ecotypes. Anthropogenic modification of estuarine habitat and intensive coastal fisheries have likely reduced and fragmented historic metapopulations of the sea/river ecotype, particularly in southern areas. In contrast, the kokanee ecotype appears to be favoured by marine fisheries and predicted changes in climate.

6.
Evolution ; 50(3): 1265-1279, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28565300

RESUMO

Anadromous and nonanadromous morphs of the Pacific salmon Oncorhynchus nerka spawn in close physical proximity in tributaries to Takla Lake, British Columbia, yet differ in morphology, gill raker number, allozyme allele frequencies, and reproductive traits. Both morphs are semelparous typically maturing at age four, the anadromous morph (sockeye) at fork lengths of 38-65 cm and the nonanadromous morph (kokanee) at 17-22 cm. When reared together, pure and hybrid morphs also exhibited different growth rates and maturity schedules. Collectively, these large differences between the morphs confirm that sockeye and kokanee exist as reproductively isolated populations. Average gene flow (m) was estimated to be 0.1-0.8% between morphs, 1.7-3.7% among tributaries for kokanee, and 0.3-5.6% among tributaries for sockeye. We conclude that divergence has occurred in sympatry and examine potential isolating mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...