Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454741

RESUMO

To comprehensively evaluate the impact of agricultural management practices on soil productivity, it is imperative to conduct a thorough analysis of soil bacterial ecology. Deep-banding nutrient-rich amendments is a soil management practice that aims to improve plant growth and soil structure by addressing the plant-growth constraints posed by dense-clay subsoils. However, the response of bacterial communities to deep-banded amendments has not been thoroughly studied. To address this knowledge gap, we conducted a controlled-environment column experiment to examine the effects of different types of soil amendments (poultry litter, wheat straw + chemical fertiliser and chemical fertiliser alone) on bacterial taxonomic composition in simulated dense-clay subsoils. We evaluated the bacterial taxonomic and ecological group composition in soils beside and below the amendment using 16S rRNA amplicon sequencing and robust statistical methods. Our results indicate that deep-banded amendments alter bacterial communities through direct and indirect mechanisms. All amendments directly facilitated a shift in bacterial communities in the absence of growing wheat. However, a combination of amendments with growing wheat led to a more pronounced bacterial community shift which was distinct from and eclipsed the direct impact of the amendments and plants alone. This indirect mechanism was evidenced to be mediated primarily by plant growth and hypothesised to result from an enhancement in wheat root distribution, density and rhizodeposition changes. Therefore, we propose that subsoil amendments regardless of type facilitated an expansion in the rhizosphere which engineered a substantial plant-mediated bacterial community response within the simulated dense-clay subsoils. Overall, our findings highlight the importance of considering the complex and synergistic interactions between soil physicochemical properties, plant growth and bacterial communities when assessing agricultural management strategies for improving soil and plant productivity.


Assuntos
Microbiota , Microbiota/genética , Argila , Rizosfera , Fertilizantes , RNA Ribossômico 16S/genética , Microbiologia do Solo , Solo/química , Plantas/genética , Bactérias , Triticum/microbiologia
2.
Infect Immun ; 91(11): e0009723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37830823

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of bacterial diarrhea with the potential to cause long-term gastrointestinal (GI) dysfunction. Preventative treatments for ETEC-induced diarrhea exist, yet the effects of these treatments on GI commensals in healthy individuals are unclear. Whether administration of a prophylactic preventative treatment for ETEC-induced diarrhea causes specific shifts in gut microbial populations in controlled environments is also unknown. Here, we studied the effects of a hyperimmune bovine colostrum (IMM-124E) used in the manufacture of Travelan (AUST L 106709) on GI bacteria in healthy C57BL/6 mice. Using next-generation sequencing, we aimed to test the onset and magnitude of potential changes to the mouse gut microbiome in response to the antidiarrheagenic hyperimmune bovine colostrum product, rich in immunoglobulins against select ETEC strains (Travelan, Immuron Ltd). We show that in mice administered colostrum containing lipopolysaccharide (LPS) antibodies, there was an increased abundance of potentially gut-beneficial bacteria, such as Akkermansia and Desulfovibrio, without disrupting the underlying ecology of the GI tract. Compared to controls, there was no difference in overall weight gain, body or cecal weights, or small intestine length following LPS antibody colostrum supplementation. Overall, dietary supplementation with colostrum containing LPS antibodies produced subtle alterations in the gut bacterial composition of mice. Primarily, Travelan LPS antibody treatment decreased the ratio of Firmicutes/Bacteroidetes in gut microbial populations in unchallenged healthy mice. Further studies are required to examine the effect of Travelan LPS antibody treatment to engineer the microbiome in a diseased state and during recovery.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Feminino , Gravidez , Camundongos , Animais , Bovinos , Lipopolissacarídeos , Imunoglobulina G , Colostro , Camundongos Endogâmicos C57BL , Fatores Imunológicos , Diarreia/microbiologia , Infecções por Escherichia coli/prevenção & controle
3.
Parkinsonism Relat Disord ; 109: 105346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966051

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), but its efficacy is tied to DBS programming, which is often time consuming and burdensome for patients, caregivers, and clinicians. Our aim is to test whether the Mobile Application for PD DBS (MAP DBS), a clinical decision support system, can improve programming. METHODS: We conducted an open-label, 1:1 randomized, controlled, multicenter clinical trial comparing six months of SOC standard of care (SOC) to six months of MAP DBS-aided programming. We enrolled patients between 30 and 80 years old who received DBS to treat idiopathic PD at six expert centers across the United States. The primary outcome was time spent DBS programming and secondary outcomes measured changes in motor symptoms, caregiver strain and medication requirements. RESULTS: We found a significant reduction in initial visit time (SOC: 43.8 ± 28.9 min n = 37, MAP DBS: 27.4 ± 13.0 min n = 35, p = 0.001). We did not find a significant difference in total programming time between the groups over the 6-month study duration. MAP DBS-aided patients experienced a significantly larger reduction in UPDRS III on-medication scores (-7.0 ± 7.9) compared to SOC (-2.7 ± 6.9, p = 0.01) at six months. CONCLUSION: MAP DBS was well tolerated and improves key aspects of DBS programming time and clinical efficacy.


Assuntos
Estimulação Encefálica Profunda , Aplicativos Móveis , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Parkinson/complicações , Resultado do Tratamento
4.
Insects ; 14(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36662023

RESUMO

Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination efficiency. In Australia, field studies are required to monitor honey bee health and to ascertain whether factors associated with colony decline are impacting hives. We monitored honey bee colonies during and after pollination services of almond. Video surveillance technology was used to quantify bee activity, and bee-collected pollen was periodically tested for pesticide residues. Plant species diversity was also assessed using DNA metabarcoding of the pollen. Results showed that bee activity increased in almond but not in bushland. Residues detected included four fungicides, although the quantities were of low risk of oral toxicity to bees. Floral diversity was lower in the pollen collected by bees from almonds compared to bushland. However, diversity was higher at the onset and conclusion of the almond bloom, suggesting that bees foraged more widely when availability was low. Our findings suggest that commercial almond orchards may sustain healthier bee colonies compared to bushland in early spring, although the magnitude of the benefit is likely landscape-dependent.

5.
Parasitol Res ; 122(3): 789-799, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602586

RESUMO

Cerebral malaria (CM) is the most severe form of malaria with the highest mortality rate and can result in life-long neurological deficits and ongoing comorbidities. Factors contributing to severity of infection and development of CM are not fully elucidated. Recent studies have indicated a key role of the gut microbiome in a range of health conditions that affect the brain, but limited microbiome research has been conducted in the context of malaria. To address this knowledge gap, the impact of CM on the gut microbiome was investigated in mice. C57BL/6J mice were infected with Plasmodium berghei ANKA (PbA) parasites and compared to non-infected controls. Microbial DNA from faecal pellets collected daily for 6-days post-infection were extracted, and microbiome comparisons conducted using 16S rRNA profiling. We identified significant differences in the composition of bacterial communities between the infected and the non-infected groups, including a higher abundance of the genera Akkermansia, Alistipes and Alloprevotella in PbA-infected mice. Furthermore, intestinal samples were collected post-cull for morphological analysis. We determined that the caecal weight was significantly lower, and the small intestine was significantly longer in PbA-infected mice than in the non-infected controls. We concluded that changes in microbial community composition were primarily driven by the infection protocol and, to a lesser extent, by the time of infection. Our findings pave the way for a new area of research and novel intervention strategies to modulate the severity of cerebral malaria disease.


Assuntos
Malária Cerebral , Microbiota , Animais , Camundongos , Malária Cerebral/parasitologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Intestinos/microbiologia , Plasmodium berghei/genética
6.
Front Cell Infect Microbiol ; 12: 905841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846755

RESUMO

Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Modelos Animais de Doenças , Disbiose/microbiologia , Gastroenteropatias/microbiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Qualidade de Vida
7.
Microbiome ; 10(1): 12, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35074003

RESUMO

BACKGROUND: Understanding how elevated atmospheric CO2 (eCO2) impacts on phosphorus (P) transformation in plant rhizosphere is critical for maintaining ecological sustainability in response to climate change, especially in agricultural systems where soil P availability is low. METHODS: This study used rhizoboxes to physically separate rhizosphere regions (plant root-soil interface) into 1.5-mm segments. Wheat plants were grown in rhizoboxes under eCO2 (800 ppm) and ambient CO2 (400 ppm) in two farming soils, Chromosol and Vertosol, supplemented with phytate (organic P). Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. Amplicon sequencing was performed on the rhizosphere-associated microbial community in the root-growth zone, and 1.5 mm and 3 mm away from the root. RESULTS: Elevated CO2 accelerated the mineralization of phytate in the rhizosphere zones, which corresponded with increases in plant-derived 13C enrichment and the relative abundances of discreet phylogenetic clades containing Bacteroidetes and Gemmatimonadetes in the bacterial community, and Funneliformis affiliated to arbuscular mycorrhizas in the fungal community. Although the amplicon sequence variants (ASVs) associated the stimulation of phytate mineralization under eCO2 differed between the two soils, these ASVs belonged to the same phyla associated with phytase and phosphatase production. The symbiotic mycorrhizas in the rhizosphere of wheat under eCO2 benefited from increased plant C supply and increased P access from soil. Further supportive evidence was the eCO2-induced increase in the genetic pool expressing the pentose phosphate pathway, which is the central pathway for biosynthesis of RNA/DNA precursors. CONCLUSIONS: The results suggested that an increased belowground carbon flow under eCO2 stimulated bacterial growth, changing community composition in favor of phylotypes capable of degrading aromatic P compounds. It is proposed that energy investments by bacteria into anabolic processes increase under eCO2 to level microbial P-use efficiencies and that synergies with symbiotic mycorrhizas further enhance the competition for and mineralization of organic P. Video Abstract.


Assuntos
Microbiota , Rizosfera , Dióxido de Carbono/metabolismo , Microbiota/genética , Fósforo , Filogenia , Microbiologia do Solo , Triticum/metabolismo
8.
J Hazard Mater ; 423(Pt B): 127156, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34544006

RESUMO

The role of organic amendments for natural degradation of aged persistent organic pollutants (POPs) in agricultural soils remains controversial. We hypothesised that organic amendments enhance bacterial activity and function at the community level, facilitating the degradation of aged POPs. An incubation study was conducted in a closed chamber over 12 months to assess the effects of selected organic amendments on extractable residues of aged dieldrin. The role of bacterial diversity and changes in community function was explored through sequenced marker genes. Linear mixed effect models indicated that, independent of amendment type, cumulative CO2 release was negatively associated with decreases in dieldrin concentration, by up to 7% per µmol CO2-C respired by microorganisms. The addition of poultry litter led to the highest daily carbon mineralisation, which was associated with low dieldrin dissipation after 9 months. In comparison, biochar resulted in significant decreases in extractable dieldrin residues over time, which coincided with shifts towards aerobic, oligotrophic, gram-negative bacteria, some with dehalogenation metabolism, and with increased potentials for biosynthesis of membrane components such as fatty acids and high redox quinones. The results supported an alternative theory that labile carbon promoted blooms of copiotrophic growth, which suppressed the required community-level traits and oligotrophic diversity to degrade chlorinated pollutants.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Carvão Vegetal , Dieldrin , Solo , Microbiologia do Solo , Poluentes do Solo/análise
9.
Ecol Evol ; 11(12): 7187-7200, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188805

RESUMO

Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as "whole-of-community" rewilding.We provide a framework for whole-of-community rewilding and describe empirical case studies as practical applications of this under-researched restoration tool that land managers can use to improve restoration outcomes.We hope this new perspective on whole-of-community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade-offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.

10.
ISME J ; 15(10): 2986-3004, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33941890

RESUMO

Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.


Assuntos
Ecossistema , Microbiota , Bactérias/genética , Sedimentos Geológicos , Metagenômica , RNA Ribossômico 16S/genética
11.
J Hazard Mater ; 404(Pt A): 124077, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33053475

RESUMO

To improve biodegradation strategies for chlorinated pollutants, the roles of soil organic matter and microbial function need to be clarified. It was hypothesised that microbial degradation of specific organic fractions in soils enhance community metabolic capability to degrade chlorinated pollutants. This field study used historic records of dieldrin concentrations since 1988 and established relationships between dieldrin dissipation and soil carbon fractions together with bacterial and fungal diversity in surface soils of Kurosol and Chromosol. Sparse partial least squares analysis linked dieldrin dissipation to metabolic activities associated with the highly decomposed carbon fraction. Dieldrin dissipation, after three decades of natural attenuation, was associated with increased bacterial species fitness for the decomposition of recalcitrant carbon substrates including synthetic chlorinated pollutants. These metabolic capabilities were linked to the decomposed carbon fraction, an important driver for the microbial community and function. Common bacterial traits among taxonomic groups enriched in samples with high dieldrin dissipation included their slow growth, large genome and complex metabolism which supported the notion that metabolic strategies for dieldrin degradation evolved in an energy-low soil environment. The findings provide new perspectives for bioremediation strategies and suggest that soil management should aim at stimulating metabolism at the decomposed, fine carbon fraction.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Biodegradação Ambiental , Carbono , Solo , Microbiologia do Solo , Poluentes do Solo/análise
12.
Sci Rep ; 10(1): 17712, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077862

RESUMO

Foetus sterility until parturition is under debate due to reports of microorganisms in the foetal environment and meconium. Sufficient controls to overcome sample contamination and provide direct evidence of microorganism viability in the pre-rectal gastrointestinal tract (GIT) have been lacking. We conducted molecular and culture-based analyses to investigate the presence of a microbiome in the foetal GIT of calves at 5, 6 and 7 months gestation, while controlling for contamination. The 5 components of the GIT (ruminal fluid, ruminal tissue, caecal fluid, caecal tissue and meconium) and amniotic fluid were found to contain a pioneer microbiome of distinct bacterial and archaeal communities. Bacterial and archaeal richness varied between GIT components. The dominant bacterial phyla in amniotic fluid differed to those in ruminal and caecal fluids and meconium. The lowest bacterial and archaeal abundances were associated with ruminal tissues. Viable bacteria unique to the ruminal fluids, which were not found in the controls from 5, 6 and 7 months gestation, were cultured, subcultured, sequenced and identified. We report that the foetal GIT is not sterile but is spatially colonised before birth by a pioneer microbiome.


Assuntos
Bovinos/embriologia , Feto/microbiologia , Microbiota , Animais , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Trato Gastrointestinal/microbiologia
13.
FASEB J ; 34(1): 1728-1744, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914625

RESUMO

Gestational diabetes mellitus (GDM) is a common pregnancy complication, particularly prevalent in obese women. Importantly, exercise has beneficial impacts on maternal glucose control and may prevent GDM in "at-risk" women. We aimed to determine whether a high-fat diet (HFD) exacerbates metabolic dysfunction and alters gut microbiome in GDM and whether endurance exercise prevents these changes. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on E18 in Wistar-Kyoto rats. Female offspring were fed a Chow or HFD (23% fat) from weaning (5 weeks) and at 16 weeks randomly allocated to remain Sedentary or to an exercise protocol of either Exercise prior to and during pregnancy (Exercise); or Exercise during pregnancy only (PregEx). Females were mated (20 weeks) and underwent indirect calorimetry (embryonic day 16; E16), glucose tolerance testing (E18), followed by 24-hr feces collection at E19 (n = 8-10/group). HFD consumption in female rats with GDM exacerbated the adverse metabolic adaptations to pregnancy and altered gut microbial populations. Specifically, the Firmicutes-to-Bacteroidetes ratio was increased, due to an underlying change in abundance of the orders Clostridiales and Bacteroidales. Maternal Exercise, but not PregEx, prevented the development of metabolic dysfunction, increased pancreatic ß-cell mass, and prevented the alteration of the gut microbiome in GDM females. Our findings suggest that maternal exercise and diet influence metabolic and microbiome dysfunction in females with GDM, which may impact long-term maternal and offspring health.


Assuntos
Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Microbiota/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Gravidez , Ratos , Desmame
14.
J Environ Sci (China) ; 87: 133-148, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791487

RESUMO

Controlling hydrogen sulfide (H2S) odors and emissions using a single, effective treatment across a town-scale sewer network is a challenge faced by many water utilities. Implementation of a sewer diversion provided the opportunity to compare the effectiveness of magnesium hydroxide (Mg(OH)2) and two biological dosing compounds (Bioproducts A and B), with different modes of action (MOA), in a field-test across a large sewer network. Mg(OH)2 increases sewer pH allowing suppression of H2S release into the sewer environment while Bioproduct A acts to disrupt microbial communication through quorum sensing (QS), reducing biofilm integrity. Bioproduct B reduces H2S odors by scouring the sewer of fats, oils and grease (FOGs), which provide adhesion points for the microbial biofilm. Results revealed that only Mg(OH)2 altered the microbial community structure and reduced H2S emissions in a live sewer system, whilst Bioproducts A and B did not reduce H2S emissions or have an observable effect on the composition of the microbial community at the dosed site. Study results recommend in situ testing of dosing treatments before implementation across an operational system.


Assuntos
Sulfeto de Hidrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Microbiota , Esgotos/química , Esgotos/microbiologia
15.
Sci Rep ; 9(1): 8890, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222122

RESUMO

Organic and inorganic amendments with equivalent nutrient content may have comparable fertilizer effects on crop yield, but their effects on the soil microbial community and subsequent plant-soil-microbe interactions in this context are unknown. This experiment aimed to understand the relationship between soil microbial communities, soil physicochemical characteristics and crop performance after addition of amendments to soil. Poultry litter and synthetic fertilizer with balanced total nitrogen (N) content equivalent to 1,200 kg ha-1 were added to the topsoil (0-10 cm) or subsoil layer (20-30 cm) of repacked soil columns. Wheat plants were grown until maturity. Soil samples were taken at Zadoks 87-91 (76 days after sowing) for analysis of bacterial and fungal communities using 16S and ITS amplicon sequencing. The interaction between amendment type and placement depth had significant effects on bacterial and fungal community structure and diversity in the two soil layers. Addition of poultry litter and fertilizer stimulated or suppressed different taxa in the topsoil and subsoil leading to divergence of these layers from the untreated control. Both amendments reduced microbial community richness, diversity and evenness in the topsoil and subsoil compared to the nil-amendment control, with these reductions in diversity being consistently negatively correlated with plant biomass (root and shoot weight, root length, grain weight) and soil fertility (soil NH4+, shoot N). These results indicate that in this experimental system, the soil microbial diversity was correlated negatively with plant productivity.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Desenvolvimento Vegetal , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos , Produtos Agrícolas/microbiologia , Fertilizantes , Fungos/fisiologia
16.
Front Microbiol ; 9: 121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483898

RESUMO

Understanding how biotic and abiotic factors govern the assembly of rhizosphere-microbial communities is a long-standing goal in microbial ecology. In phytoremediation research, where plants are used to remediate heavy metal-contaminated soils, a deeper understanding of rhizosphere-microbial ecology is needed to fully exploit the potential of microbial-assisted phytoremediation. This study investigated whether Grime's competitor/stress-tolerator/ruderal (CSR) theory could be used to describe the impact of cadmium (Cd) and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the assembly of soil-bacterial communities using Illumina 16S rRNA profiling and the predictive metagenomic-profiling program, PICRUSt. Using predictions based on CSR theory, we hypothesized that Cd and the presence of a rhizosphere would affect community assembly. We predicted that the additional resource availability in the rhizosphere would enrich for competitive life strategists, while the presence of Cd would select for stress-tolerators. Traits identified as competitive followed CSR predictions, discriminating between rhizosphere and bulk-soil communities whilst stress-tolerance traits increased with Cd dose, but only in bulk-soil communities. These findings suggest that a bacterium's competitive attributes are critical to its ability to occupy and proliferate in a Cd-contaminated rhizosphere. Ruderal traits, which relate to community re-colonization potential, were synergistically decreased by the presence of the rhizosphere and Cd dose. Taken together this microcosm study suggests that the CSR theory is broadly applicable to microbial communities. Further work toward developing a simplified and robust strategy for microbial CSR classification will provide an ecologically meaningful framework to interpret community-level changes across a range of biomes.

17.
Genome Announc ; 5(23)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596412

RESUMO

We report here the draft genome sequence of Leifsonia sp. strain NCR5, a Gram-positive actinomycete isolated from Carpobrotus rossii (Haw.) Schwantes rhizosphere. The de novo genome of Leifsonia sp. strain NCR5 was assembled with 69 scaffolds and a G+C content of 69%, was 4.2 Mb in length, and contained 3,952 coding sequences.

18.
J Biol Chem ; 292(29): 12041-12053, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546427

RESUMO

Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C-methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S-adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S-adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient ΔspeD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/agonistas , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/biossíntese , Espermidina/metabolismo , Fatores de Transcrição/agonistas , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Metionina/metabolismo , Metilação , Ciclo do Nitrogênio , Óperon , Purinas/metabolismo , S-Adenosilmetionina/metabolismo , Análise de Célula Única , Espermidina/análogos & derivados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Genome Announc ; 4(5)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27795247

RESUMO

We report here the draft genome of Enterobacter ludwigii NCR3, a Gram-negative bacterium isolated from the Carpobrotus rossii (Haw.) Schwantes rhizosphere. The analysis of the ~4.8-Mb draft genome shows that this strain harbors several genes associated with heavy metal resistance and plant growth-promoting activity, suggesting its potential application in microbe-assisted phytoremediation.

20.
Genome Announc ; 4(5)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27795276

RESUMO

Rhodococcus erythropolis NSX2 is a rhizobacterium isolated from a heavy metal-contaminated environment. The 6.2-Mb annotated genome sequence shows that this strain harbors genes associated with heavy-metal resistance and xenobiotics degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...