Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0260812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914747

RESUMO

Understanding the points in a species breeding cycle when they are most vulnerable to environmental fluctuations is key to understanding interannual demography and guiding effective conservation and management. Seabirds represent one of the most threatened groups of birds in the world, and climate change and severe weather is a prominent and increasing threat to this group. We used a multi-state capture-recapture model to examine how the demographic rates of a long-lived trans-oceanic migrant seabird, the Manx shearwater Puffinus puffinus, are influenced by environmental conditions experienced at different stages of the annual breeding cycle and whether these relationships vary with an individual's breeding state in the previous year (i.e., successful breeder, failed breeder and non-breeder). Our results imply that populations of Manx shearwaters are comprised of individuals with different demographic profiles, whereby more successful reproduction is associated with higher rates of survival and breeding propensity. However, we found that all birds experienced the same negative relationship between rates of survival and wind force during the breeding season, indicating a cost of reproduction (or central place constraint for non-breeders) during years with severe weather conditions. We also found that environmental effects differentially influence the breeding propensity of individuals in different breeding states. This suggests individual spatio-temporal variation in habitat use during the annual cycle, such that climate change could alter the frequency that individuals with different demographic profiles breed thereby driving a complex and less predictable population response. More broadly, our study highlights the importance of considering individual-level factors when examining population demography and predicting how species may respond to climate change.


Assuntos
Migração Animal/fisiologia , Cruzamento , Mudança Climática , Demografia/estatística & dados numéricos , Ecossistema , Reprodução , Estações do Ano , Animais , Aves , Oceanos e Mares
2.
Sci Rep ; 11(1): 18941, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556717

RESUMO

There is increasing evidence for impacts of light pollution on the physiology and behaviour of wild animals. Nocturnally active Procellariiform seabirds are often found grounded in areas polluted by light and struggle to take to the air again without human intervention. Hence, understanding their responses to different wavelengths and intensities of light is urgently needed to inform mitigation measures. Here, we demonstrate how different light characteristics can affect the nocturnal flight of Manx shearwaters Puffinus puffinus by experimentally introducing lights at a colony subject to low levels of light pollution due to passing ships and coastal developments. The density of birds in flight above the colony was measured using a thermal imaging camera. We compared number of flying shearwaters under dark conditions and in response to an artificially introduced light, and observed fewer birds in flight during 'light-on' periods, suggesting that adult shearwaters were repelled by the light. This effect was stronger with higher light intensity, increasing duration of 'light-on' periods and with green and blue compared to red light. Thus, we recommend lower light intensity, red colour, and shorter duration of 'light-on' periods as mitigation measures to reduce the effects of light at breeding colonies and in their vicinity.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Poluição Luminosa/efeitos adversos , Animais , Cor , Raio , Fatores de Tempo
3.
PLoS One ; 14(8): e0221625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454375

RESUMO

Sampling approaches used to census and monitor populations of flora and fauna are diverse, ranging from simple random sampling to complex hierarchal stratified designs. Usually the approach taken is determined by the spatial and temporal distribution of the study population, along with other characteristics of the focal species. Long-term monitoring programs used to assess seabird population trends are facilitated by their high site fidelity, but are often hampered by large and difficult to access colonies, with highly variable densities that require intensive survey. We aimed to determine the sampling effort required to (a) estimate population size with a high degree of confidence, and (b) detect different scenarios of population change in a regionally important species in the Atlantic, the Manx shearwater (Puffinus puffinus). Analyses were carried out using data collected from tape-playback surveys on four islands in the North Atlantic. To explore how sampling effort influenced confidence around abundance estimates, we used the heuristic approach of imagining the areas sampled represented the total population, and bootstrapped varying proportions of subsamples. This revealed that abundance estimates vary dramatically when less than half of all plots (n dependent on the size of the site) is randomly subsampled, leading to an unacceptable lack of confidence in population estimates. Confidence is substantially improved using a multi-stage stratified approach based on previous information on distribution in the colonies. In reality, this could lead to reducing the number of plots required by up to 80%. Furthermore, power analyses suggested that random selection of monitoring plots using a matched pairs approach generates little power to detect overall population changes of 10%, and density-dependent changes as large as 50%, because variation in density between plots is so high. Current monitoring programs have a high probability of failing to detect population-level changes due to inappropriate sampling efforts. Focusing sampling in areas of high density with low plot to plot variance dramatically increases the power to detect year to year population change, albeit at the risk of not detecting increases in low density areas, which may be an unavoidable strategy when resources are limited. We discuss how challenging populations with similar features to seabirds might be censused and monitored most effectively.


Assuntos
Aves/fisiologia , Cruzamento , Comportamento de Nidação/fisiologia , Animais , Geografia , Irlanda , Dinâmica Populacional , Especificidade da Espécie , Inquéritos e Questionários , País de Gales
4.
Behav Processes ; 167: 103917, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349024

RESUMO

To disperse between isolated waterbodies, freshwater organisms must often cross terrestrial barriers and many freshwater animals that are incapable of flight must rely on transport via flooding events, other animals or anthropogenic activity. Decapods such as crayfish, on the other hand, can disperse to nearby waterbodies by walking on land, a behaviour that has facilitated the spread of invasive species. Overland movement could play a key role in the management of non-native crayfish, though to what extent terrestrial emigration occurs in different species is poorly understood. Here, we directly compared the terrestrial emigration tendency of two non-native crayfish species in Great Britain; red swamp (Procambarus clarkii) and signal (Pacifastacus leniusculus) crayfish. We found that both species emigrated from the water and that there was no significant difference in terms of their terrestrial emigration tendency, suggesting that there is a risk both of these species will migrate overland and disperse to new habitats. This study shows that terrestrial emigration is an important behavioural trait to consider when preventing the escape of crayfish from aquaculture and further spread of invasive species.


Assuntos
Migração Animal/fisiologia , Ecossistema , Espécies Introduzidas , Animais , Aquicultura , Astacoidea , Água Doce
5.
Ecol Evol ; 8(24): 12322-12334, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619548

RESUMO

Accurate counts of wild populations are essential to monitor change through time, but some techniques demand specialist surveyors and may result in unacceptable disturbance or inaccurate counts. Recent technological developments in unmanned aerial vehicles (UAVs) offer great potential for a range of survey and monitoring approaches. They literally offer a bird's-eye view, but this increased power of observation presents the challenge of translating large amounts of imagery into accurate survey data. Seabirds, in particular, present the particular challenges of nesting in large, often inaccessible colonies that are difficult to view for ground observers, which are commonly susceptible to disturbance. We develop a protocol for carrying out UAV surveys of a breeding seabird colony (Lesser Black-backed Gulls, Larus fuscus) and subsequent image processing to provide a semiautomated classification for counting the number of birds. Behavioral analysis of the gull colonies demonstrated that minimal disturbance occurred during UAV survey flights at an altitude of 15 m above ground level, which provided high-resolution imagery for analysis. A protocol of best practice was developed using the expertise from both a UAV perspective and that of a dedicated observer. A GIS-based semiautomated classification process successfully counted the gulls, with a mean agreement of 98% and a correlation of 99% with manual counts of imagery. We also propose a method to differentiate between the different gull species captured by our survey. Our UAV survey and analysis approach provide accurate counts (when comparing manual vs. semi-automated counts taken from the UAV imagery) of a wild seabird population with minimal disturbance, with the potential to expand this to include species differentiation. The continued development of analytical and survey tools whilst minimizing the disturbance to wild populations is both key to unlocking the future of the rapid advances in UAV technology for ecological survey.

6.
Bioorg Med Chem Lett ; 21(24): 7310-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22061639

RESUMO

GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.


Assuntos
Hipoglicemiantes/química , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...