Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15688-15692, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815061

RESUMO

We report the direct and accurate spectroscopic quantification of the inverted singlet-triplet gap in 1,3,4,6,9b-pentaazaphenalene. This measurement is achieved by directly probing the lowest singlet and triplet states via high-resolution cryogenic anion photoelectron spectroscopy. The assignment of the first excited singlet state is confirmed by visible absorption spectroscopy in an argon matrix at 20 K. Our measurements yield an inverted singlet-triplet gap with ΔEST= -0.047(7) eV. The accurate quantification of the singlet-triplet gap presented here allows for direct evaluation of various computational electronic structure methods and highlights the critical importance of the proper description of the double excitation character of these electronic states. Overall, this study validates the idea that despite Hund's multiplicity rule, useful organic chromophores can have inherently inverted singlet-triplet gaps.

2.
J Phys Chem A ; 128(8): 1417-1426, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38329215

RESUMO

Broad-band ultraviolet photolysis (λ > 200 nm) of (cyanomethylene)cyclopropane (5) in an argon matrix at 20 K generates 1-cyano-2-methylenecyclopropane (7), a previously unknown compound. This product was initially identified by comparison of its infrared spectrum to that predicted by an anharmonic MP2/6-311+G(2d,p) calculation. This assignment was unambiguously confirmed by the synthesis of 1-cyano-2-methylenecyclopropane (7) and observation of its authentic infrared spectrum, which proved identical to that of the observed photoproduct. We investigated the singlet and triplet potential energy surfaces associated with this isomerization process using density functional theory and multireference calculations. The observed rearrangement of compound 5 to compound 7 is computed to be endothermic (3.3 kcal/mol). We were unable to observe the reverse reaction (7 → 5) under the photochemical conditions.

3.
J Phys Chem A ; 128(8): 1427-1437, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354365

RESUMO

The gas-phase rotational spectrum of 1-cyano-2-methylenecyclopropane (C1, C5H5N), an isomer of pyridine, is presented for the first time, covering the range from 235 to 500 GHz. Over 3600 a-, b-, and c-type transitions for the ground vibrational state have been assigned, measured, and least-squares fit to partial-octic A- and S-reduced distorted-rotor Hamiltonians with low statistical uncertainty (σfit = 42 kHz). Transitions for the two lowest-energy fundamental states (ν27 and ν26) and the lowest-energy overtone (2ν27) have been similarly measured, assigned, and least-squares fit to single-state Hamiltonians. Computed vibration-rotation interaction constants (B0-Bv) using the B3LYP and MP2 levels of theory are compared with the corresponding experimental values. Based upon our preliminary analysis, the next few vibrationally excited states form one or more complex polyads of interacting states via Coriolis and anharmonic coupling. The spectroscopic constants and transition frequencies presented here form the foundation for both future laboratory spectroscopy and astronomical searches for 1-cyano-2-methylenecyclopropane.

4.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352424

RESUMO

The millimeter-wave rotational spectrum of ketene (H2C=C=O) has been collected and analyzed from 130 to 750 GHz, providing highly precise spectroscopic constants from a sextic, S-reduced Hamiltonian in the Ir representation. The chemical synthesis of deuteriated samples allowed spectroscopic measurements of five previously unstudied ketene isotopologues. Combined with previous work, these data provide a new, highly precise, and accurate semi-experimental (reSE) structure for ketene from 32 independent moments of inertia. This reSE structure was determined with the experimental rotational constants of each available isotopologue, together with computed vibration-rotation interaction and electron-mass distribution corrections from coupled-cluster calculations with single, double, and perturbative triple excitations [CCSD(T)/cc-pCVTZ]. The 2σ uncertainties of the reSE parameters are ≤0.0007 Å and 0.014° for the bond distances and angle, respectively. Only S-reduced spectroscopic constants were used in the structure determination due to a breakdown in the A-reduction of the Hamiltonian for the highly prolate ketene species. All four reSE structural parameters agree with the "best theoretical estimate" (BTE) values, which are derived from a high-level computed re structure [CCSD(T)/cc-pCV6Z] with corrections for the use of a finite basis set, the incomplete treatment of electron correlation, relativistic effects, and the diagonal Born-Oppenheimer breakdown. In each case, the computed value of the geometric parameter lies within the statistical experimental uncertainty (2σ) of the corresponding semi-experimental coordinate. The discrepancies between the BTE structure and the reSE structure are 0.0003, 0.0000, and 0.0004 Å for rC-C, rC-H, and rC-O, respectively, and 0.009° for θC-C-H.


Assuntos
Etilenos , Teoria Quântica , Análise Espectral , Cetonas
5.
J Am Chem Soc ; 144(45): 20866-20874, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321916

RESUMO

We present here a new example of chemical reactivity governed by quantum tunneling, which also highlights the limitations of the classical theories. The syn and anti conformers of a triplet 2-formylphenylnitrene, generated in a nitrogen matrix, were found to spontaneously rearrange to the corresponding 2,1-benzisoxazole and imino-ketene, respectively. The kinetics of both transformations were measured at 10 and 20 K and found to be temperature-independent, providing clear evidence of concomitant tunneling reactions (heavy-atom and H-atom). Computations confirm the existence of these tunneling reaction pathways. Although the energy barrier between the nitrene conformers is lower than any of the observed reactions, no conformational interconversion was observed. These results demonstrate an unprecedented case of simultaneous tunneling control in conformer-specific reactions of the same chemical species. The product outcome is impossible to be rationalized by the conventional kinetic or thermodynamic control.


Assuntos
Nitrogênio , Conformação Molecular , Termodinâmica , Cinética , Temperatura
6.
Angew Chem Int Ed Engl ; 59(40): 17622-17627, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32558100

RESUMO

Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy-atom QMT reaction. Triplet syn-2-formyl-3-fluorophenylnitrene, generated in argon matrices by UV-irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4-fluoro-2,1-benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature-independent rate constants (k≈1.4×10-3  s-1 ; half-life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy-atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy-atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.

7.
Angew Chem Int Ed Engl ; 56(32): 9435-9439, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28635187

RESUMO

The π bonds between organic radicals have generated excitement as an orthogonal interaction for designing self-assembling architectures in water. A systematic investigation of the effect of the viologen cation radical structure on the strength and nature of the pimer bond is provided. A striking and unexpected feature of this π bond is that the bond strength is unchanged by substitution with electron-donating groups or withdrawing groups or with increased conjugation. Furthermore, the interaction is undiminished by sterically bulky N-alkyl groups. Theoretical modeling indicates that strong dispersion forces dominate the interaction between the radicals, rationalizing the insensitivity of the bonding interaction to substituents: The stacking of polarizable π radicals leads to attractive dispersion forces in excess of typical dispersion interactions of small molecules and helps overcome the Coulombic repulsion of bringing two cationic species into contact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA