Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502915

RESUMO

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.

3.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857575

RESUMO

Microbial genome annotation is the process of identifying structural and functional elements in DNA sequences and subsequently attaching biological information to those elements. DRAM is a tool developed to annotate bacterial, archaeal, and viral genomes derived from pure cultures or metagenomes. DRAM goes beyond traditional annotation tools by distilling multiple gene annotations to genome level summaries of functional potential. Despite these benefits, a downside of DRAM is the requirement of large computational resources, which limits its accessibility. Further, it did not integrate with downstream metabolic modeling tools that require genome annotation. To alleviate these constraints, DRAM and the viral counterpart, DRAM-v, are now available and integrated with the freely accessible KBase cyberinfrastructure. With kb_DRAM users can generate DRAM annotations and functional summaries from microbial or viral genomes in a point-and-click interface, as well as generate genome-scale metabolic models from DRAM annotations. AVAILABILITY AND IMPLEMENTATION: For kb_DRAM users, the kb_DRAM apps on KBase can be found in the catalog at https://narrative.kbase.us/#catalog/modules/kb_DRAM. For kb_DRAM users, a tutorial workflow with all documentation is available at https://narrative.kbase.us/narrative/129480. For kb_DRAM developers, software is available at https://github.com/shafferm/kb_DRAM.


Assuntos
Bactérias , Software , Anotação de Sequência Molecular , Bactérias/genética , Archaea/genética , Metabolômica
4.
Metabolites ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677023

RESUMO

Systems biology research spans a range of biological scales and science domains, and often requires a collaborative effort to collect and share data so that integration is possible. However, sharing data effectively is a challenging task that requires effort and alignment between collaborative partners, as well as coordination between organizations, repositories, and journals. As a community of systems biology researchers, we must get better at efficiently sharing data, and ensuring that shared data comes with the recognition and citations it deserves.

6.
Nat Protoc ; 18(1): 208-238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376589

RESUMO

Uncultivated Bacteria and Archaea account for the vast majority of species on Earth, but obtaining their genomes directly from the environment, using shotgun sequencing, has only become possible recently. To realize the hope of capturing Earth's microbial genetic complement and to facilitate the investigation of the functional roles of specific lineages in a given ecosystem, technologies that accelerate the recovery of high-quality genomes are necessary. We present a series of analysis steps and data products for the extraction of high-quality metagenome-assembled genomes (MAGs) from microbiomes using the U.S. Department of Energy Systems Biology Knowledgebase (KBase) platform ( http://www.kbase.us/ ). Overall, these steps take about a day to obtain extracted genomes when starting from smaller environmental shotgun read libraries, or up to about a week from larger libraries. In KBase, the process is end-to-end, allowing a user to go from the initial sequencing reads all the way through to MAGs, which can then be analyzed with other KBase capabilities such as phylogenetic placement, functional assignment, metabolic modeling, pangenome functional profiling, RNA-Seq and others. While portions of such capabilities are available individually from other resources, the combination of the intuitive usability, data interoperability and integration of tools in a freely available computational resource makes KBase a powerful platform for obtaining MAGs from microbiomes. While this workflow offers tools for each of the key steps in the genome extraction process, it also provides a scaffold that can be easily extended with additional MAG recovery and analysis tools, via the KBase software development kit (SDK).


Assuntos
Metagenoma , Microbiota , Filogenia , Genoma Bacteriano , Microbiota/genética , Bactérias/genética , Metagenômica
8.
Front Microbiol ; 12: 765268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956127

RESUMO

Marine microbial ecology requires the systematic comparison of biogeochemical and sequence data to analyze environmental influences on the distribution and variability of microbial communities. With ever-increasing quantities of metagenomic data, there is a growing need to make datasets Findable, Accessible, Interoperable, and Reusable (FAIR) across diverse ecosystems. FAIR data is essential to developing analytical frameworks that integrate microbiological, genomic, ecological, oceanographic, and computational methods. Although community standards defining the minimal metadata required to accompany sequence data exist, they haven't been consistently used across projects, precluding interoperability. Moreover, these data are not machine-actionable or discoverable by cyberinfrastructure systems. By making 'omic and physicochemical datasets FAIR to machine systems, we can enable sequence data discovery and reuse based on machine-readable descriptions of environments or physicochemical gradients. In this work, we developed a novel technical specification for dataset encapsulation for the FAIR reuse of marine metagenomic and physicochemical datasets within cyberinfrastructure systems. This includes using Frictionless Data Packages enriched with terminology from environmental and life-science ontologies to annotate measured variables, their units, and the measurement devices used. This approach was implemented in Planet Microbe, a cyberinfrastructure platform and marine metagenomic web-portal. Here, we discuss the data properties built into the specification to make global ocean datasets FAIR within the Planet Microbe portal. We additionally discuss the selection of, and contributions to marine-science ontologies used within the specification. Finally, we use the system to discover data by which to answer various biological questions about environments, physicochemical gradients, and microbial communities in meta-analyses. This work represents a future direction in marine metagenomic research by proposing a specification for FAIR dataset encapsulation that, if adopted within cyberinfrastructure systems, would automate the discovery, exchange, and re-use of data needed to answer broader reaching questions than originally intended.

11.
mSystems ; 6(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622857

RESUMO

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

12.
ISME Commun ; 1(1): 77, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36765102

RESUMO

Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-stranded DNA (dsDNA) virus analysis capabilities and resources into 'iVirus' on the CyVerse collaborative cyberinfrastructure. Here we substantially expand iVirus's functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into the Department of Energy's Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads were aggregated to capture new data and environments. Finally, documentation, as "live" protocols, was updated to maximize user interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.

14.
Nucleic Acids Res ; 49(D1): D575-D588, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32986834

RESUMO

For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical 'Rosetta Stone' to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


Assuntos
Bactérias/metabolismo , Bases de Dados Factuais , Fungos/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Plantas/metabolismo , Bactérias/genética , Genoma Bacteriano , Termodinâmica
15.
Nat Biotechnol ; 39(4): 499-509, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33169036

RESUMO

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.


Assuntos
Archaea/genética , Bactérias/genética , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Vírus/genética , Microbiologia do Ar , Animais , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Catálogos como Assunto , Ecossistema , Humanos , Filogenia , Microbiologia do Solo , Vírus/isolamento & purificação , Microbiologia da Água
17.
Nucleic Acids Res ; 49(D1): D792-D802, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32735679

RESUMO

In recent years, large-scale oceanic sequencing efforts have provided a deeper understanding of marine microbial communities and their dynamics. These research endeavors require the acquisition of complex and varied datasets through large, interdisciplinary and collaborative efforts. However, no unifying framework currently exists for the marine science community to integrate sequencing data with physical, geological, and geochemical datasets. Planet Microbe is a web-based platform that enables data discovery from curated historical and on-going oceanographic sequencing efforts. In Planet Microbe, each 'omics sample is linked with other biological and physiochemical measurements collected for the same water samples or during the same sample collection event, to provide a broader environmental context. This work highlights the need for curated aggregation efforts that can enable new insights into high-quality metagenomic datasets. Planet Microbe is freely accessible from https://www.planetmicrobe.org/.


Assuntos
Organismos Aquáticos/microbiologia , Análise de Dados , Meio Ambiente , Metagenômica , Planetas , Bases de Dados Genéticas , Padrões de Referência , Interface Usuário-Computador
20.
Gigascience ; 8(7)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31289831

RESUMO

BACKGROUND: Scientists have amassed a wealth of microbiome datasets, making it possible to study microbes in biotic and abiotic systems on a population or planetary scale; however, this potential has not been fully realized given that the tools, datasets, and computation are available in diverse repositories and locations. To address this challenge, we developed iMicrobe.us, a community-driven microbiome data marketplace and tool exchange for users to integrate their own data and tools with those from the broader community. FINDINGS: The iMicrobe platform brings together analysis tools and microbiome datasets by leveraging National Science Foundation-supported cyberinfrastructure and computing resources from CyVerse, Agave, and XSEDE. The primary purpose of iMicrobe is to provide users with a freely available, web-based platform to (1) maintain and share project data, metadata, and analysis products, (2) search for related public datasets, and (3) use and publish bioinformatics tools that run on highly scalable computing resources. Analysis tools are implemented in containers that encapsulate complex software dependencies and run on freely available XSEDE resources via the Agave API, which can retrieve datasets from the CyVerse Data Store or any web-accessible location (e.g., FTP, HTTP). CONCLUSIONS: iMicrobe promotes data integration, sharing, and community-driven tool development by making open source data and tools accessible to the research community in a web-based platform.


Assuntos
Metagenômica/métodos , Microbiota/genética , Software , Big Data , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...