Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35793591

RESUMO

We characterized the human ß-like globin transgenes in two mouse models of sickle cell disease (SCD) and tested a genome-editing strategy to induce red blood cell fetal hemoglobin (HbF; α2γ2). Berkeley SCD mice contain four to 22 randomly arranged, fragmented copies of three human transgenes (HBA1, HBG2-HBG1-HBD-HBBS and a mini-locus control region) integrated into a single site of mouse chromosome 1. Cas9 disruption of the BCL11A repressor binding motif in the γ-globin gene (HBG1 and HBG2; HBG) promoters of Berkeley mouse hematopoietic stem cells (HSCs) caused extensive death from multiple double-strand DNA breaks. Long-range sequencing of Townes SCD mice verified that the endogenous Hbb genes were replaced by single-copy segments of human HBG1 and HBBS including proximal but not some distal gene-regulatory elements. Townes mouse HSCs were viable after Cas9 disruption of the HBG1 BCL11A binding motif but failed to induce HbF to therapeutic levels, contrasting with human HSCs. Our findings provide practical information on the genomic structures of two common mouse SCD models, illustrate their limitations for analyzing therapies to induce HbF and confirm the importance of distal DNA elements in human globin regulation. This article has an associated First Person interview with the first author of the paper.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Modelos Animais de Doenças , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes , Humanos , Camundongos , Fatores de Transcrição/genética , Transgenes , gama-Globinas/genética
2.
Nature ; 595(7866): 295-302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34079130

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Assuntos
Adenina/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Animais , Antígenos CD34/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Camundongos
3.
Blood Adv ; 3(21): 3379-3392, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698466

RESUMO

Induction of fetal hemoglobin (HbF) via clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of DNA regulatory elements that repress γ-globin gene (HBG1 and HBG2) expression is a promising therapeutic strategy for sickle cell disease (SCD) and ß-thalassemia, although the optimal technical approaches and limiting toxicities are not yet fully defined. We disrupted an HBG1/HBG2 gene promoter motif that is bound by the transcriptional repressor BCL11A. Electroporation of Cas9 single guide RNA ribonucleoprotein complex into normal and SCD donor CD34+ hematopoietic stem and progenitor cells resulted in high frequencies of on-target mutations and the induction of HbF to potentially therapeutic levels in erythroid progeny generated in vitro and in vivo after transplantation of hematopoietic stem and progenitor cells into nonobese diabetic/severe combined immunodeficiency/Il2rγ-/-/KitW41/W41 immunodeficient mice. On-target editing did not impair CD34+ cell regeneration or differentiation into erythroid, T, B, or myeloid cell lineages at 16 to 17 weeks after xenotransplantation. No off-target mutations were detected by targeted sequencing of candidate sites identified by circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), an in vitro genome-scale method for detecting Cas9 activity. Engineered Cas9 containing 3 nuclear localization sequences edited human hematopoietic stem and progenitor cells more efficiently and consistently than conventional Cas9 with 2 nuclear localization sequences. Our studies provide novel and essential preclinical evidence supporting the safety, feasibility, and efficacy of a mechanism-based approach to induce HbF for treating hemoglobinopathies.


Assuntos
Hemoglobina Fetal/genética , Edição de Genes , gama-Globinas/genética , Anemia Falciforme/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Eritropoese/genética , Regulação da Expressão Gênica , Marcação de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/genética , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Modelos Biológicos , Mutação , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , Deleção de Sequência
4.
Nat Med ; 22(9): 987-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27525524

RESUMO

Disorders resulting from mutations in the hemoglobin subunit beta gene (HBB; which encodes ß-globin), mainly sickle cell disease (SCD) and ß-thalassemia, become symptomatic postnatally as fetal γ-globin expression from two paralogous genes, hemoglobin subunit gamma 1 (HBG1) and HBG2, decreases and adult ß-globin expression increases, thereby shifting red blood cell (RBC) hemoglobin from the fetal (referred to as HbF or α2γ2) to adult (referred to as HbA or α2ß2) form. These disorders are alleviated when postnatal expression of fetal γ-globin is maintained. For example, in hereditary persistence of fetal hemoglobin (HPFH), a benign genetic condition, mutations attenuate γ-globin-to-ß-globin switching, causing high-level HbF expression throughout life. Co-inheritance of HPFH with ß-thalassemia- or SCD-associated gene mutations alleviates their clinical manifestations. Here we performed CRISPR-Cas9-mediated genome editing of human blood progenitors to mutate a 13-nt sequence that is present in the promoters of the HBG1 and HBG2 genes, thereby recapitulating a naturally occurring HPFH-associated mutation. Edited progenitors produced RBCs with increased HbF levels that were sufficient to inhibit the pathological hypoxia-induced RBC morphology found in SCD. Our findings identify a potential DNA target for genome-editing-mediated therapy of ß-hemoglobinopathies.


Assuntos
Anemia Falciforme/terapia , Células Precursoras Eritroides , Hemoglobina Fetal/genética , Edição de Genes/métodos , Mutagênese Sítio-Dirigida/métodos , Regiões Promotoras Genéticas/genética , Globinas beta/genética , Talassemia beta/terapia , gama-Globinas/genética , Anemia Falciforme/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/metabolismo , Hemoglobina A/genética , Hemoglobina A/metabolismo , Humanos , Hibridização in Situ Fluorescente , Mutação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Talassemia beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...