Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549269

RESUMO

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Europa (Continente) , Produtos Agrícolas , Agricultura/métodos
3.
Proc Biol Sci ; 290(2000): 20230897, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282535

RESUMO

Modern agriculture has drastically changed global landscapes and introduced pressures on wildlife populations. Policy and management of agricultural systems has changed over the last 30 years, a period characterized not only by intensive agricultural practices but also by an increasing push towards sustainability. It is crucial that we understand the long-term consequences of agriculture on beneficial invertebrates and assess if policy and management approaches recently introduced are supporting their recovery. In this study, we use large citizen science datasets to derive trends in invertebrate occupancy in Great Britain between 1990 and 2019. We compare these trends between regions of no- (0%), low- (greater than 0-50%) and high-cropland (greater than 50%) cover, which includes arable and horticultural crops. Although we detect general declines, invertebrate groups are declining most strongly in high-cropland cover regions. This suggests that even in the light of improved policy and management over the last 30 years, the way we are managing cropland is failing to conserve and restore invertebrate communities. New policy-based drivers and incentives are required to support the resilience and sustainability of agricultural ecosystems. Post-Brexit changes in UK agricultural policy and reforms under the Environment Act offer opportunities to improve agricultural landscapes for the benefit of biodiversity and society.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , União Europeia , Reino Unido , Biodiversidade , Agricultura , Invertebrados , Produtos Agrícolas
4.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357858

RESUMO

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Assuntos
Ecossistema , Plantas , Filogenia , Sementes , Fenótipo , Folhas de Planta
5.
Environ Sci Technol ; 57(8): 3445-3454, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780611

RESUMO

While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.


Assuntos
Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Alimentos , Estágios do Ciclo de Vida
6.
Sci Rep ; 12(1): 14331, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995928

RESUMO

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.


Assuntos
Ciência do Cidadão , Praguicidas , Animais , Abelhas , Produtos Agrícolas , Praguicidas/toxicidade , Polinização , Vírus de RNA , Estações do Ano
7.
MethodsX ; 8: 101303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434823

RESUMO

Worldwide honeybees (Apis mellifera L.) are one of the most widely kept domesticated animals, supporting domestic and commercial livelihoods through the production of honey and wax, as well as in the delivery of pollination services to crops. Quantifying which plant species are foraged upon by honeybees provides insights into their nutritional status as well as patterns of landscape scale habitat utilization. Here we outline a rapid and reproducible methodology for identifying environmental DNA (eDNA) originating principally from pollen grains suspended within honey. The process is based on a DNA extraction incorporating vacuum filtration prior to universal eukaryotic internal transcribed spacer 2 region (ITS2) amplicon generation, sequencing and identification. To provide a pre-cursor to sequence phylotyping, we outline systems for error-corrected processing amplicon sequence variant abundance tables that removes chimeras. This methodology underpins the new UK National Honey Monitoring Scheme.•We compare the efficacy and speed of centrifugation and filtration systems for removing pollen from honey samples as a precursor to plant DNA barcoding.•We introduce the 'HONEYPI' informatics pipeline, an open access resource implemented in python 2.7, to ensure long-term reproducibility during the process of amplicon sequence variant classification.

8.
Curr Biol ; 31(20): 4627-4634.e3, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34411527

RESUMO

Declines in invertebrate biodiversity1,2 pose a significant threat to key ecosystem services.3-5 Current analyses of biodiversity often focus on taxonomic diversity (e.g., species richness),6,7 which does not account for the functional role of a species. Functional diversity of species' morphological or behavioral traits is likely more relevant to ecosystem service delivery than taxonomic diversity, as functional diversity has been found to be a key driver of a number of ecosystem services including decomposition and pollination.8-12 At present, we lack a good understanding of long-term and large-scale changes in functional diversity, which limits our capacity to determine the vulnerability of key ecosystem services with ongoing biodiversity change. Here we derive trends in functional diversity and taxonomic diversity over a 45-year period across Great Britain for species supporting freshwater aquatic functions, pollination, natural pest control, and agricultural pests (a disservice). Species supporting aquatic functions showed a synchronous collapse and recovery in functional and taxonomic diversity. In contrast, pollinators showed an increase in taxonomic diversity, but a decline and recovery in functional diversity. Pest control agents and pests showed greater stability in functional diversity over the assessment period. We also found that functional diversity could appear stable or show patterns of recovery, despite ongoing changes in the composition of traits among species. Our results suggest that invertebrate assemblages can show considerable variability in their functional structure over time at a national scale, which provides an important step in determining the long-term vulnerability of key ecosystem services with ongoing biodiversity change.


Assuntos
Ecossistema , Invertebrados , Agricultura , Animais , Biodiversidade , Polinização
9.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32900958

RESUMO

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Assuntos
Plantas/classificação , Sequestro de Carbono , Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química
10.
J Environ Manage ; 265: 110550, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292173

RESUMO

Insects provide vital ecosystem services to agricultural systems in the form of pollination and natural pest control. However, there are currently widespread declines in the beneficial insects which deliver these services (i.e. pollinators and 'natural enemies' such as predators and parasitoids). Two key drivers of these declines have been the expansion of agricultural land and intensification of agricultural production. With an increasing human population requiring additional sources of food, further changes in agricultural land use appear inevitable. Identifying likely trajectories of change and predicting their impacts on beneficial insects provides a scientific basis for making informed decisions on the policies and practices of sustainable agriculture. We created spatially explicit, exploratory scenarios of potential changes in the extent and intensity of agricultural land use across Great Britain (GB). Scenarios covered 52 possible combinations of change in agricultural land cover (i.e. agricultural expansion or grassland restoration) and intensity (i.e. crop type and diversity). We then used these scenarios to predict impacts on beneficial insect species richness and several metrics of functional diversity at a 10km (hectad) resolution. Predictions were based on species distribution models derived from biological records, comprising data on 116 bee species (pollinators) and 81 predatory beetle species (natural enemies). We identified a wide range of possible consequences for beneficial insect species richness and functional diversity as result of future changes in agricultural extent and intensity. Current policies aimed at restoring semi-natural grassland should result in increases in the richness and functional diversity of both pollinators and natural enemies, even if agricultural practices remain intensive on cropped land (i.e. land-sparing). In contrast, any expansion of arable land is likely to be accompanied by widespread declines in richness of beneficial insects, even if cropping practices become less intensive (i.e. land-sharing), although effects of functional diversity are more mixed.


Assuntos
Agricultura , Ecossistema , Animais , Abelhas , Biodiversidade , Humanos , Insetos , Polinização , Reino Unido
11.
Insects ; 11(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197403

RESUMO

Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.

12.
Nat Commun ; 10(1): 1018, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914632

RESUMO

Pollination is a critical ecosystem service underpinning the productivity of agricultural systems across the world. Wild insect populations provide a substantial contribution to the productivity of many crops and seed set of wild flowers. However, large-scale evidence on species-specific trends among wild pollinators are lacking. Here we show substantial inter-specific variation in pollinator trends, based on occupancy models for 353 wild bee and hoverfly species in Great Britain between 1980 and 2013. Furthermore, we estimate a net loss of over 2.7 million occupied 1 km2 grid cells across all species. Declines in pollinator evenness suggest that losses were concentrated in rare species. In addition, losses linked to specific habitats were identified, with a 55% decline among species associated with uplands. This contrasts with dominant crop pollinators, which increased by 12%, potentially in response agri-environment measures. The general declines highlight a fundamental deterioration in both wider biodiversity and non-crop pollination services.


Assuntos
Abelhas , Biodiversidade , Ecossistema , Polinização , Animais , Teorema de Bayes , Produtos Agrícolas , Insetos , Dinâmica Populacional/tendências , Reino Unido
13.
Ecol Lett ; 21(12): 1821-1832, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223295

RESUMO

Understanding spatial variation in the structure and stability of plant-pollinator networks, and their relationship with anthropogenic drivers, is key for maintaining pollination services and mitigating declines. Constructing sufficient networks to examine patterns over large spatial scales remains challenging. Using biological records (citizen science), we constructed potential plant-pollinator networks at 10 km resolution across Great Britain, comprising all potential interactions inferred from recorded floral visitation and species co-occurrence. We calculated network metrics (species richness, connectance, pollinator and plant generality) and adapted existing methods to assess robustness to sequences of simulated plant extinctions across multiple networks. We found positive relationships between agricultural land cover and both pollinator generality and robustness to extinctions under several extinction scenarios. Increased robustness was attributable to changes in plant community composition (fewer extinction-prone species) and network structure (increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes can confer robustness to potential future perturbations on plant-pollinator networks.


Assuntos
Agricultura , Ecossistema , Plantas , Polinização , Reino Unido
14.
Ecology ; 99(8): 1771-1782, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29727489

RESUMO

The use of pesticides within agricultural ecosystems has led to wide concern regarding negative effects on the environment. One possible alternative is the use of predators of pest species that naturally occur within agricultural ecosystems. However, the mechanistic basis for how species can be manipulated in order to maximize pest control remains unclear. We carried out a meta-analysis of 51 studies that manipulated predator species richness in reference to suppression of herbivore prey to determine which components of predator diversity affect pest control. Overall, functional diversity (FD) based on predator's habitat domain, diet breadth and hunting strategy was ranked as the most important variable. Our analysis showed that increases in FD in polycultures led to greater prey suppression compared to both the mean of the component predator species, and the most effective predator species, in monocultures. Further analysis of individual traits indicated these effects are likely to be driven by broad niche differentiation and greater resource exploitation in functionally diverse predator communities. A decoupled measure of phylogenetic diversity, whereby the overlap in variation with FD was removed, was not found to be an important driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates will help maximize pest control ecosystem services in agricultural ecosystems, with the potential to increase suppression above that of the most effective predator species.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar , Herbivoria , Invertebrados , Filogenia
15.
PLoS One ; 13(1): e0189681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298300

RESUMO

Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure.


Assuntos
Mel/análise , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Produtos Agrícolas , União Europeia , Reino Unido
16.
Nat Commun ; 7: 12459, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27529661

RESUMO

Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.


Assuntos
Abelhas/fisiologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/parasitologia , Neonicotinoides/farmacologia , Polinização/efeitos dos fármacos , Algoritmos , Animais , Teorema de Bayes , Abelhas/classificação , Inglaterra , Geografia , Inseticidas/farmacologia , Dinâmica Populacional , Especificidade da Espécie
18.
Nat Commun ; 6: 10122, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26646209

RESUMO

The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Reino Unido
19.
Trends Ecol Evol ; 30(11): 673-684, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437633

RESUMO

Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais/métodos , Previsões
20.
Proc Biol Sci ; 282(1816): 20151740, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26423846

RESUMO

Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields.


Assuntos
Agricultura/métodos , Animais Selvagens/fisiologia , Biodiversidade , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Animais , Inglaterra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...