Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617217

RESUMO

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.

3.
Front Immunol ; 14: 1308594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292490

RESUMO

Introduction: Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods: We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion: Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , Monócitos , Leucócitos Mononucleares , Pulmão
4.
Clin Exp Allergy ; 52(10): 1169-1182, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35575980

RESUMO

BACKGROUND: Infection with rhinovirus (RV) is a major risk factor for disease exacerbations in patients with allergic asthma. This study analysed a broad set of cytokines in the noses of children and adults with asthma during RV infection in order to identify immunophenotypes that may link to virus-induced episodes. METHODS: Nasal wash specimens were analysed in children (n = 279 [healthy, n = 125; stable asthma, n = 64; wheeze, n = 90], ages 2-12) who presented to a hospital emergency department, and in adults (n = 44 [healthy, n = 13; asthma, n = 31], ages 18-38) who were experimentally infected with RV, including a subset who received anti-IgE. Cytokines were measured by multiplex bead assay and data analysed by univariate and multivariate methods to test relationships to viral load, allergic status, airway inflammation, and clinical outcomes. RESULTS: Analysis of a core set of 7 cytokines (IL-6, CXCL8/IL-8, IL-15, EGF, G-CSF, CXCL10/IP-10 and CCL22/MDC) revealed higher levels in children with acute wheeze versus those with stable asthma or controls. Multivariate analysis identified two clusters that were enriched for acutely wheezing children; one displaying high viral load ("RV-high") with robust secretion of CXCL10, and the other displaying high IgE with elevated EGF, CXCL8 and both eosinophil- and neutrophil-derived mediators. Broader assessment of 39 cytokines confirmed that children with acute wheeze were not deficient in type 1 anti-viral responses. Analysis of 18 nasal cytokines in adults with asthma who received RV challenge identified two clusters; one that was "RV-high" and linked to robust induction of anti-viral cytokines and anti-IgE; and the other associated with more severe symptoms and a higher inflammatory state featuring eosinophil and neutrophil factors. CONCLUSIONS: The results confirm the presence of different immunophenotypes linked to parameters of airway disease in both children and adults with asthma who are infected with RV. Such discrepancies may reflect the ability to regulate anti-viral responses.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Adolescente , Adulto , Quimiocina CXCL10 , Criança , Pré-Escolar , Análise por Conglomerados , Citocinas , Infecções por Enterovirus/complicações , Fator de Crescimento Epidérmico , Fator Estimulador de Colônias de Granulócitos , Humanos , Interleucina-15 , Interleucina-6 , Interleucina-8 , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/diagnóstico , Sons Respiratórios , Rhinovirus , Adulto Jovem
5.
Front Immunol ; 13: 850987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386716

RESUMO

Three COVID-19 vaccines have received FDA-authorization and are in use in the United States, but there is limited head-to-head data on the durability of the immune response elicited by these vaccines. Using a quantitative assay we studied binding IgG antibodies elicited by BNT162b2, mRNA-1273 or Ad26.COV2.S in an employee cohort over a span out to 10 months. Age and sex were explored as response modifiers. Of 234 subjects in the vaccine cohort, 114 received BNT162b2, 114 received mRNA-1273 and six received Ad26.COV2.S. IgG levels measured between seven to 20 days after the second vaccination were similar in recipients of BNT162b2 and mRNA-127 and were ~50-fold higher than in recipients of Ad26.COV2.S. However, by day 21 and at later time points IgG levels elicited by BNT162b2 were lower than mRNA-1273. Accordingly, the IgG decay curve was steeper for BNT162b2 than mRNA-1273. Age was a significant modifier of IgG levels in recipients of BNT162b2, but not mRNA-1273. After six months, IgG levels elicited by BNT162b2, but not mRNA-1273, were lower than IgG levels in patients who had been hospitalized with COVID-19 six months earlier. Similar findings were observed when comparing vaccine-elicited antibodies with steady-state IgG targeting seasonal human coronaviruses. Differential IgG decay could contribute to differences observed in clinical protection over time between BNT162b2 and mRNA-1273.


Assuntos
Vacina BNT162 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , SARS-CoV-2 , Estados Unidos , Vacinação
6.
Elife ; 102021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350827

RESUMO

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease-specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and common cells across human immune monitoring settings. T-REX identified cells with highly similar phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out during analysis and then used to test whether T-REX identified biologically significant cells. T-REX identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by ≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the direction and degree of change for each individual donor provided a useful summary view and revealed patterns of immune system behavior across immune monitoring settings. For example, the magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mechanistically significant cells and places emerging diseases into a systems immunology context for comparison to well-studied immune changes.


Assuntos
COVID-19/imunologia , Leucemia Mieloide Aguda/imunologia , Melanoma/imunologia , Infecções por Picornaviridae/imunologia , Aprendizado de Máquina não Supervisionado , Adolescente , Adulto , Algoritmos , Linfócitos T CD4-Positivos/imunologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias , Rhinovirus/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Adulto Jovem
7.
Int Arch Allergy Immunol ; 182(5): 417-424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621972

RESUMO

BACKGROUND: Detailed understanding of the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the cause of coronavirus disease 2019 (CO-VID-19) has been hampered by a lack of quantitative antibody assays. OBJECTIVE: The objective was to develop a quantitative assay for IgG to SARS-CoV-2 proteins that could be implemented in clinical and research laboratories. METHODS: The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding domain (RBD) or nucleocapsid protein to the solid phase of the ImmunoCAP. Plasma and serum samples from patients hospitalized with COVID-19 (n = 60) and samples from donors banked before the emergence of COVID-19 (n = 109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform. RESULTS: At a cutoff of 2.5 µg/mL, the assay demonstrated sensitivity and specificity exceeding 95% for IgG to both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 µg/mL (IQR 18-52) and 24.5 µg/mL (IQR 9-59), respectively. Among 17 patients with longitudinal samples, there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 µg/mL, or 1% of total IgG. CONCLUSIONS: We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to mutated COVID-19 proteins, has good performance characteristics, and has a readout in standardized units.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/virologia , Humanos , Estudos Longitudinais , Sensibilidade e Especificidade
8.
medRxiv ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200147

RESUMO

BACKGROUND: Detailed understanding of the immune response to SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), has been hampered by a lack of quantitative antibody assays. OBJECTIVE: To develop a quantitative assay for IgG to SARS-CoV-2 proteins that could readily be implemented in clinical and research laboratories. METHODS: The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding-domain (RBD) or nucleocapsid protein to the solid-phase of the ImmunoCAP resin. Plasma and serum samples from patients with COVID-19 (n=51) and samples from donors banked prior to the emergence of COVID-19 (n=109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform. RESULTS: Performance characteristics demonstrated 100% sensitivity and 99% specificity at a cut-off level of 2.5 µg/mL for both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 µg/mL (IQR 18-52) and 24.5 µg/mL (IQR 9-59), respectively. Among 17 patients with longitudinal samples there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 µg/mL, or 1% of total IgG. CONCLUSIONS: We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to novel antigens, has good performance characteristics and a read-out in standardized units.

9.
bioRxiv ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32766581

RESUMO

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders Expanding (T-REX) was created to identify changes in both very rare and common cells in diverse human immune monitoring settings. T-REX identified cells that were highly similar in phenotype and localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized reagents used to detect the rhinovirus-specific CD4+ cells, MHCII tetramers, were not used during unsupervised analysis and instead 'left out' to serve as a test of whether T-REX identified biologically significant cells. In the rhinovirus challenge study, T-REX identified virus-specific CD4+ T cells based on these cells being a distinct phenotype that expanded by ≥95% following infection. T-REX successfully identified hotspots containing virus-specific T cells using pairs of samples comparing Day 7 of infection to samples taken either prior to infection (Day 0) or after clearing the infection (Day 28). Mapping pairwise comparisons in samples according to both the direction and degree of change provided a framework to compare systems level immune changes during infectious disease or therapy response. This revealed that the magnitude and direction of systemic immune change in some COVID-19 patients was comparable to that of blast crisis acute myeloid leukemia patients undergoing induction chemotherapy and characterized the identity of the immune cells that changed the most. Other COVID-19 patients instead matched an immune trajectory like that of individuals with rhinovirus infection or melanoma patients receiving checkpoint inhibitor therapy. T-REX analysis of paired blood samples provides an approach to rapidly identify and characterize mechanistically significant cells and to place emerging diseases into a systems immunology context.

10.
J Allergy Clin Immunol ; 146(3): 555-570, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320734

RESUMO

BACKGROUND: Allergic asthmatic subjects are uniquely susceptible to acute wheezing episodes provoked by rhinovirus. However, the underlying immune mechanisms and interaction between rhinovirus and allergy remain enigmatic, and current paradigms are controversial. OBJECTIVE: We sought to perform a comprehensive analysis of type 1 and type 2 innate and adaptive responses in allergic asthmatic subjects infected with rhinovirus. METHODS: Circulating virus-specific TH1 cells and allergen-specific TH2 cells were precisely monitored before and after rhinovirus challenge in allergic asthmatic subjects (total IgE, 133-4692 IU/mL; n = 28) and healthy nonallergic controls (n = 12) using peptide/MHCII tetramers. T cells were sampled for up to 11 weeks to capture steady-state and postinfection phases. T-cell responses were analyzed in parallel with 18 cytokines in the nose, upper and lower airway symptoms, and lung function. The influence of in vivo IgE blockade was also examined. RESULTS: In uninfected asthmatic subjects, higher numbers of circulating virus-specific PD-1+ TH1 cells, but not allergen-specific TH2 cells, were linked to worse lung function. Rhinovirus infection induced an amplified antiviral TH1 response in asthmatic subjects versus controls, with synchronized allergen-specific TH2 expansion, and production of type 1 and 2 cytokines in the nose. In contrast, TH2 responses were absent in infected asthmatic subjects who had normal lung function, and in those receiving anti-IgE. Across all subjects, early induction of a minimal set of nasal cytokines that discriminated high responders (G-CSF, IFN-γ, TNF-α) correlated with both egress of circulating virus-specific TH1 cells and worse symptoms. CONCLUSIONS: Rhinovirus induces robust TH1 responses in allergic asthmatic subjects that may promote disease, even after the infection resolves.


Assuntos
Asma/imunologia , Hipersensibilidade/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Humanos , Ativação Linfocitária , Receptor de Morte Celular Programada 1/metabolismo , Sons Respiratórios
11.
J Allergy Clin Immunol ; 146(3): 545-554, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32018030

RESUMO

BACKGROUND: Rhinovirus frequently causes asthma exacerbations among children and young adults who are allergic. The interaction between allergen and rhinovirus-induced symptoms and inflammation over time is unclear. OBJECTIVE: Our aim was to compare the response to an experimental inoculation with rhinovirus-16 in allergic asthmatics with the response in healthy controls and to evaluate the effects of administrating omalizumab before and during the infection. METHODS: Two clinical trials were run in parallel. In one of these trials, the response to an experimental inoculation with rhinovirus-16 among asthmatics with high levels of total IgE was compared to the response in healthy controls. The other trial compared the effects of administering omalizumab versus placebo to asthmatics in a randomized, double-blind placebo-controlled investigation. The primary outcome for both trials compared lower respiratory tract symptoms (LRTSs) between study groups over the first 4 days of infection. RESULTS: Frequent comparisons of symptoms, lung function, and blood eosinophil counts revealed differences that were more pronounced among allergic asthmatics than among controls by days 2 and 3 after virus inoculation. Additionally, an augmentation of upper respiratory tract symptom scores and LRTS scores occurred among the atopic asthmatics versus the controls during the resolution of symptoms (P < .01 for upper respiratory symptom tract scores and P < .001 for LRTS scores). The beneficial effects of administering omalizumab on reducing LRTSs and improving lung function were strongest over the first 4 days. CONCLUSIONS: LRTSs and blood eosinophil counts were augmented and lung function was reduced among allergic asthmatics early after rhinovirus inoculation but increased late in the infection during symptom resolution. The effect of administering omalizumab on the response to rhinovirus was most pronounced during the early/innate phase of the infection.


Assuntos
Antialérgicos/uso terapêutico , Asma/imunologia , Imunoglobulina E/metabolismo , Omalizumab/uso terapêutico , Infecções por Picornaviridae/imunologia , Sistema Respiratório/patologia , Rhinovirus/fisiologia , Adulto , Asma/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Infecções por Picornaviridae/tratamento farmacológico , Efeito Placebo , Testes de Função Respiratória , Sistema Respiratório/virologia , Adulto Jovem
12.
Cell Rep ; 30(2): 351-366.e7, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940481

RESUMO

Human rhinoviruses cause the common cold and exacerbate chronic respiratory diseases. Although infection elicits neutralizing antibodies, these do not persist or cross-protect across multiple rhinovirus strains. To analyze rhinovirus-specific B cell responses in humans, we developed techniques using intact RV-A16 and RV-A39 for high-throughput high-dimensional single-cell analysis, with parallel assessment of antibody isotypes in an experimental infection model. Our approach identified T-bet+ B cells binding both viruses that account for ∼5% of CXCR5- memory B cells. These B cells infiltrate nasal tissue and expand in the blood after infection. Their rapid secretion of heterotypic immunoglobulin G (IgG) in vitro, but not IgA, matches the nasal antibody profile post-infection. By contrast, CXCR5+ memory B cells binding a single virus are clonally distinct, absent in nasal tissue, and secrete homotypic IgG and IgA, mirroring the systemic response. Temporal and spatial functions of dichotomous memory B cells might explain the ability to resolve infection while rendering the host susceptible to re-infection.


Assuntos
Linfócitos B/imunologia , Reações Cruzadas/imunologia , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Rhinovirus/imunologia , Humanos
13.
Clin Exp Allergy ; 49(12): 1541-1549, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31833127

RESUMO

In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2018. Experimental models of allergic disease, basic mechanisms and clinical mechanisms are all covered.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Animais , Humanos
14.
J Immunol ; 203(9): 2545-2556, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554696

RESUMO

Der p 2 is one of the most important allergens from the house dust mite Dermatophagoides pteronyssinus Identification of human IgE Ab binding epitopes can be used for rational design of allergens with reduced IgE reactivity for therapy. Antigenic analysis of Der p 2 was performed by site-directed mutagenesis based on the x-ray crystal structure of the allergen in complex with a Fab from the murine IgG mAb 7A1 that binds an epitope overlapping with human IgE binding sites. Conformational changes upon Ab binding were confirmed by nuclear magnetic resonance using a 7A1-single-chain variable fragment. In addition, a human IgE Ab construct that interferes with mAb 7A1 binding was isolated from a combinatorial phage-display library constructed from a mite-allergic patient and expressed as two recombinant forms (single-chain Fab in Pichia pastoris and Fab in Escherichia coli). These two IgE Ab constructs and the mAb 7A1 failed to recognize two Der p 2 epitope double mutants designed to abolish the allergen-Ab interaction while preserving the fold necessary to bind Abs at other sites of the allergen surface. A 10-100-fold reduction in binding of IgE from allergic subjects to the mutants additionally showed that the residues mutated were involved in IgE Ab binding. In summary, mutagenesis of a Der p 2 epitope defined by x-ray crystallography revealed an IgE Ab binding site that will be considered for the design of hypoallergens for immunotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Sítios de Ligação de Anticorpos , Dessensibilização Imunológica/métodos , Imunoglobulina E/imunologia , Anticorpos Monoclonais/química , Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cristalografia por Raios X , Epitopos/imunologia , Humanos , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/imunologia
15.
Sci Transl Med ; 11(478)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728287

RESUMO

Sepsis is an often deadly complication of infection in which systemic inflammation damages the vasculature, leading to tissue hypoperfusion and multiple organ failure. Currently, the standard of care for sepsis is predominantly supportive, with few therapeutic options available. Because of increased sepsis incidence worldwide, there is an urgent need for discovery of novel therapeutic targets and development of new treatments. The recently discovered function of the endoplasmic reticulum (ER) in regulation of inflammation offers a potential avenue for sepsis control. Here, we identify the ER-resident protein sigma-1 receptor (S1R) as an essential inhibitor of cytokine production in a preclinical model of septic shock. Mice lacking S1R succumb quickly to hypercytokinemia induced by a sublethal challenge in two models of acute inflammation. Mechanistically, we find that S1R restricts the endonuclease activity of the ER stress sensor IRE1 and cytokine expression but does not inhibit the classical inflammatory signaling pathways. These findings could have substantial clinical implications, as we further find that fluvoxamine, an antidepressant therapeutic with high affinity for S1R, protects mice from lethal septic shock and dampens the inflammatory response in human blood leukocytes. Our data reveal the contribution of S1R to the restraint of the inflammatory response and place S1R as a possible therapeutic target to treat bacterial-derived inflammatory pathology.


Assuntos
Endorribonucleases/metabolismo , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores sigma/metabolismo , Sepse/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Fluvoxamina/farmacologia , Células HEK293 , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Ligantes , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores sigma/agonistas , Sepse/sangue , Sepse/complicações , Sepse/patologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem , Receptor Sigma-1
16.
Clin Exp Allergy ; 49(5): 564-581, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793397

RESUMO

Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.


Assuntos
Asma/diagnóstico , Asma/etiologia , Linfócitos T/imunologia , Animais , Asma/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Modelos Biológicos , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
17.
J Allergy Clin Immunol ; 143(3): 894-913, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639346

RESUMO

Atopic dermatitis (AD) affects up to 20% of children worldwide and is an increasing public health problem, particularly in developed countries. Although AD in infants and young children can resolve, there is a well-recognized increased risk of sequential progression from AD to other atopic diseases, including food allergy (FA), allergic rhinitis, allergic asthma, and allergic rhinoconjunctivitis, a process referred to as the atopic march. The mechanisms underlying the development of AD and subsequent progression to other atopic comorbidities, particularly FA, are incompletely understood and the subject of intense investigation. Other major research objectives are the development of effective strategies to prevent AD and FA, as well as therapeutic interventions to inhibit the atopic march. In 2017, the Division of Allergy, Immunology, and Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop to discuss current understanding and important advances in these research areas and to identify gaps in knowledge and future research directions. International and national experts in the field were joined by representatives from several National Institutes of Health institutes. Summaries of workshop presentations, key conclusions, and recommendations are presented herein.


Assuntos
Hipersensibilidade Imediata , Dermatopatias , Animais , Biomarcadores , Humanos , Hipersensibilidade Imediata/etiologia , Hipersensibilidade Imediata/microbiologia , Hipersensibilidade Imediata/prevenção & controle , Hipersensibilidade Imediata/terapia , Microbiota , Dermatopatias/etiologia , Dermatopatias/microbiologia , Dermatopatias/prevenção & controle , Dermatopatias/terapia
18.
J Infect Dis ; 217(3): 381-392, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29309618

RESUMO

Background: Little is known about T cells that respond to human rhinovirus in vivo, due to timing of infection, viral diversity, and complex T-cell specificities. We tracked circulating CD4+ T cells with identical epitope specificities that responded to intranasal challenge with rhinovirus (RV)-A39, and we assessed T-cell signatures in the nose. Methods: Cells were monitored using a mixture of 2 capsid-specific major histocompatibility complex II tetramers over a 7-week period, before and after RV-A39 challenge, in 16 human leukocyte antigen-DR4+ subjects who participated in a trial of Bifidobacterium lactis (Bl-04) supplementation. Results: Pre-existing tetramer+ T cells were linked to delayed viral shedding, enriched for activated CCR5+ Th1 effectors, and included a minor interleukin-21+ T follicular helper cell subset. After RV challenge, expansion and activation of virus-specific CCR5+ Th1 effectors was restricted to subjects who had a rise in neutralizing antibodies, and tetramer-negative CCR5+ effector memory types were comodulated. In the nose, CXCR3-CCR5+ T cells present during acute infection were activated effector memory type, whereas CXCR3+ cells were central memory type, and cognate chemokine ligands were elevated over baseline. Probiotic had no T-cell effects. Conclusions: We conclude that virus-specific CCR5+ effector memory CD4+ T cells primed by previous exposure to related viruses contribute to the control of rhinovirus.


Assuntos
Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Memória Imunológica , Células Th1/imunologia , Adolescente , Adulto , Sangue/imunologia , Rastreamento de Células , Infecções por Enterovirus/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/imunologia , Receptores CCR5/análise , Adulto Jovem
19.
J Allergy Clin Immunol ; 141(1): 311-321.e10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624612

RESUMO

BACKGROUND: Mast cells (MCs), the primary effector cell of the atopic response, participate in immune defense at host/environment interfaces, yet the mechanisms by which they interact with CD4+ T cells has been controversial. OBJECTIVE: We used in situ-matured primary human MCs and matched CD4+ T cells to diligently assess the ability of MCs to act as antigen-presenting cells. METHODS: We examined mature human skin-derived MCs using flow cytometry for expression of antigen-presenting molecules, for their ability to stimulate CD4+ T cells to express CD25 and proliferate when exposed to superantigen or to cytomegalovirus (CMV) antigen using matched T cells and MCs from CMV-seropositive or CMV-seronegative donors, and for antigen uptake. Subcellular localization of antigen, HLA molecules, and tryptase was analyzed by using structured illumination microscopy. RESULTS: Our data show that IFN-γ induces HLA class II, HLA-DM, CD80, and CD40 expression on MCs, whereas MCs take up soluble and particulate antigens in an IFN-γ-independent manner. IFN-γ-primed MCs guide activation of T cells by Staphylococcus aureus superantigen and, when preincubated with CMV antigens, induce a recall CD4+ TH1 proliferation response only in CMV-seropositive donors. MCs co-opt their secretory granules for antigen processing and presentation. Consequently, MC degranulation increases surface delivery of HLA class II/peptide, further enhancing stimulation of T-cell proliferation. CONCLUSIONS: IFN-γ primes human MCs to activate T cells through superantigen and to present CMV antigen to TH1 cells, co-opting MC secretory granules for antigen processing and presentation and creating a feed-forward loop of T-cell-MC cross-activation.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Mastócitos/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos Virais/imunologia , Transporte Biológico , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular , Células Cultivadas , Dinaminas , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunofenotipagem , Interferon gama/metabolismo , Mastócitos/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
20.
J Allergy Clin Immunol ; 141(6): 2048-2060.e13, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28939412

RESUMO

BACKGROUND: The pathogenesis of severe asthma in childhood remains poorly understood. OBJECTIVE: We sought to construct the immunologic landscape in the airways of children with severe asthma. METHODS: Comprehensive analysis of multiple cell types and mediators was performed by using flow cytometry and a multiplex assay with bronchoalveolar lavage (BAL) specimens (n = 68) from 52 highly characterized allergic and nonallergic children (0.5-17 years) with severe treatment-refractory asthma. Multiple relationships were tested by using linear mixed-effects modeling. RESULTS: Memory CCR5+ TH1 cells were enriched in BAL fluid versus blood, and pathogenic respiratory viruses and bacteria were readily detected. IFN-γ+IL-17+ and IFN-γ-IL-17+ subsets constituted secondary TH types, and BAL fluid CD8+ T cells were almost exclusively IFN-γ+. The TH17-associated mediators IL-23 and macrophage inflammatory protein 3α/CCL20 were highly expressed. Despite low TH2 numbers, TH2 cytokines were detected, and TH2 skewing correlated with total IgE levels. Type 2 innate lymphoid cells and basophils were scarce in BAL fluid. Levels of IL-5, IL-33, and IL-28A/IFN-λ2 were increased in multisensitized children and correlated with IgE levels to dust mite, ryegrass, and fungi but not cat, ragweed, or food sources. Additionally, levels of IL-5, but no other cytokine, increased with age and correlated with eosinophil numbers in BAL fluid and blood. Both plasmacytoid and IgE+FcεRI+ myeloid dendritic cells were present in BAL fluid. CONCLUSIONS: The lower airways of children with severe asthma display a dominant TH1 signature and atypical cytokine profiles that link to allergic status. Our findings deviate from established paradigms and warrant further assessment of the pathogenicity of TH1 cells in patients with severe asthma.


Assuntos
Asma/imunologia , Células Th1/imunologia , Adolescente , Asma/complicações , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Lactente , Pulmão/imunologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...