Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773949

RESUMO

Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence, and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g., during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. Here, we conduct the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focus on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland, and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.

2.
Int J Biol Macromol ; 254(Pt 2): 127967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944738

RESUMO

Resilin is an extremely efficient elastic protein found in the moving parts of insects. Despite many years of resilin research, we are still only just starting to understand its diversity, native structures, and functions. Understanding differences in resilin structure and diversity could lead to the development of bioinspired elastic polymers, with broad applications in materials science. Here, to better understand resilin structure, we offer a novel methodology for identifying resilin-rich regions of the insect cuticle using non-invasive Raman spectroscopy in a model species, the desert locust (Schistocerca gregaria). The Raman spectrum of the resilin-rich semilunar process of the hind leg was compared with that of nearby low-resilin cuticle, and reference spectra and peaks assigned for these two regions. The main peaks of resilin include two bands associated with tyrosine at 955-962 and 1141-1203 cm-1 and a strong peak at 1615 cm-1, attributed to the α-Amide I group associated with dityrosine. We also found the chitin skeletal modes at ~485-567 cm-1 to be significant contributors to spectra variance between the groups. Raman spectra were also compared to results obtained by fluorescence spectroscopy, as a control technique. Principal component analysis of these resulting spectra revealed differences in the light-scattering properties of resilin-rich and resilin-poor cuticular regions, which may relate to differences in native protein structure and relative abundance.


Assuntos
Proteínas de Insetos , Análise Espectral Raman , Animais , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Quitina/química
3.
J Insect Physiol ; 152: 104595, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052320

RESUMO

Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.


Assuntos
Orelha Média , Gafanhotos , Animais , Orelha Média/fisiologia , Membrana Timpânica/fisiologia , Gafanhotos/fisiologia , Som , Fenômenos Biomecânicos
4.
Curr Biol ; 33(24): 5304-5315.e3, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37963458

RESUMO

Hearing has evolved independently many times in the animal kingdom and is prominent in various insects and vertebrates for conspecific communication and predator detection. Among insects, katydid (Orthoptera: Tettigoniidae) ears are unique, as they have evolved outer, middle, and inner ear components, analogous in their biophysical principles to the mammalian ear. The katydid ear consists of two paired tympana located in each foreleg. These tympana receive sound externally on the tympanum surface (usually via pinnae) or internally via an ear canal (EC). The EC functions to capture conspecific calls and low frequencies, while the pinnae passively amplify higher-frequency ultrasounds including bat echolocation. Together, these outer ear components provide enhanced hearing sensitivity across a dynamic range of over 100 kHz. However, despite a growing understanding of the biophysics and function of the katydid ear, its precise emergence and evolutionary history remains elusive. Here, using microcomputed tomography (µCT) scanning, we recovered geometries of the outer ear components and wings of an exceptionally well-preserved katydid fossilized in Baltic amber (∼44 million years [Ma]). Using numerical and theoretical modeling of the wings, we show that this species was communicating at a peak frequency of 31.62 (± 2.27) kHz, and we demonstrate that the ear was biophysically tuned to this signal and to providing hearing at higher-frequency ultrasounds (>80 kHz), likely for enhanced predator detection. The results indicate that the evolution of the unique ear of the katydid, with its broadband ultrasonic sensitivity and analogous biophysical properties to the ears of mammals, emerged in the Eocene.


Assuntos
Quirópteros , Ecolocação , Ortópteros , Animais , Microtomografia por Raio-X , Audição , Mamíferos
5.
J Comp Physiol B ; 193(6): 597-605, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857900

RESUMO

The Orthoptera are a diverse insect order well known for their locomotive capabilities. To jump, the bush-cricket uses a muscle actuated (MA) system in which leg extension is actuated by contraction of the femoral muscles of the hind legs. In comparison, the locust uses a latch mediated spring actuated (LaMSA) system, in which leg extension is actuated by the recoil of spring-like structure in the femur. The aim of this study was to describe the jumping kinematics of Mecopoda elongata (Tettigoniidae) and compare this to existing data in Schistocerca gregaria (Acrididae), to determine differences in control of rotation during take-off between similarly sized MA and LaMSA jumpers. 269 jumps from 67 individuals of M. elongata with masses from 0.014 g to 3.01 g were recorded with a high-speed camera setup. In M. elongata, linear velocity increased with mass0.18 and the angular velocity (pitch) decreased with mass-0.13. In S. gregaria, linear velocity is constant and angular velocity decreases with mass-0.24. Despite these differences in velocity scaling, the ratio of translational kinetic energy to rotational kinetic energy was similar for both species. On average, the energy distribution of M. elongata was distributed 98.8% to translational kinetic energy and 1.2% to rotational kinetic energy, whilst in S. gregaria it is 98.7% and 1.3%, respectively. This energy distribution was independent of size for both species. Despite having two different jump actuation mechanisms, the ratio of translational and rotational kinetic energy formed during take-off is fixed across these distantly related orthopterans.


Assuntos
Gafanhotos , Gryllidae , Humanos , Animais , Gafanhotos/fisiologia , Gryllidae/fisiologia , Músculos , Fenômenos Biomecânicos
6.
Parasitology ; 150(14): 1307-1315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37395052

RESUMO

Host­parasite associations provide a benchmark for investigating evolutionary arms races and antagonistic coevolution. However, potential ecological mechanisms underlying such associations are difficult to unravel. In particular, local adaptations of hosts and/or parasites may hamper reliable inferences of host­parasite relationships and the specialist­generalist definitions of parasite lineages, making it problematic to understand such relationships on a global scale. Phylogenetic methods were used to investigate co-phylogenetic patterns between vector-borne parasites of the genus Haemoproteus and their passeriform hosts, to infer the ecological interactions of parasites and hosts that may have driven the evolution of both groups in a local geographic domain. As several Haemoproteus lineages were only detected once, and given the occurrence of a single extreme generalist, the effect of removing individual lineages on the co-phylogeny pattern was tested. When all lineages were included, and when all singly detected lineages were removed, there was no convincing evidence for host­parasite co-phylogeny. However, when only the generalist lineage was removed, strong support for co-phylogeny was indicated, and ecological interactions could be successfully inferred. This study exemplifies the importance of identifying locally abundant lineages when sampling host­parasite systems, to provide reliable insights into the precise mechanisms underlying host­parasite interactions.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Animais , Filogenia , Haemosporida/genética , Interações Hospedeiro-Parasita , Doenças das Aves/parasitologia
7.
Insect Conserv Divers ; 16(2): 173-189, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505358

RESUMO

Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants.The outcome was a set of 61 priority challenges within four groupings of related themes: (i) 'Fundamental Research' (themes: Taxonomy, 'Blue Skies' [defined as research ideas without immediate practical application], Methods and Techniques); (ii) 'Anthropogenic Impacts and Conservation' (themes: Anthropogenic Impacts, Conservation Options); (iii) 'Uses, Ecosystem Services and Disservices' (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) 'Collaboration, Engagement and Training' (themes: Knowledge Access, Training and Collaboration, Societal Engagement).Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages.Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change.

8.
R Soc Open Sci ; 9(10): 220532, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36312569

RESUMO

Bush-crickets have dual-input, tympanal ears located in the tibia of their forelegs. The sound will first of all reach the external sides of the tympana, before arriving at the internal sides through the bush-cricket's ear canal, the acoustic trachea (AT), with a phase lapse and pressure gain. It has been shown that for many bush-crickets, the AT has an exponential horn-shaped morphology and function, producing a significant pressure gain above a certain cut-off frequency. However, the underlying mechanism of different AT designs remains elusive. In this study, we demonstrate that the AT of the duetting Phaneropterinae bush-cricket Pterodichopetala cieloi function as coupled resonators, producing sound pressure gains at the sex-specific conspecific calling song frequency, and attenuating the remainder-a functioning mechanism significantly different from an exponential horn. Furthermore, it is demonstrated that despite the sexual dimorphism between the P. cieloi AT, both male and female AT have a similar biophysical mechanism. The analysis was carried out using an interdisciplinary approach, where micro-computed tomography was used for the morphological properties of the P. cieloi AT, and a finite-element analysis was applied on the precise tracheal geometry to further justify the experimental results and to go beyond experimental limitations.

9.
Acta Biomater ; 153: 399-410, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055609

RESUMO

Derived from the respiratory tracheae, bush-crickets' acoustic tracheae (or ear canals) are hollow tubes evolved to transmit sounds from the external environment to the interior ear. Due to the location of the ears in the forelegs, the acoustic trachea serves as a structural element that can withstand large stresses during locomotion. In this study, we report a new Atomic Force Microscopy Force Spectroscopy (AFM-FS) approach to quantify the mechanics of taenidia in the bush-cricket Mecopoda elongata. Mechanical properties were examined over the longitudinal axis of hydrated taenidia, by indenting single fibres using precision hyperbolic tips. Analysis of the force-displacement (F-d) extension curves at low strains using the Hertzian contact model showed an Elastic modulus distribution between 13.9 MPa to 26.5 GPa, with a mean of 5.2 ± 7 GPa and median 1.03 GPa. Although chitin is the primary component of stiffness, variation of elasticity in the nanoscale suggests that resilin significantly affects the mechanical properties of single taenidia fibres (38% of total data). For indentations up to 400 nm, an intricate chitin-resilin response was observed, suggesting structural optimization between compliance and rigidity. Finite-element analysis on composite materials demonstrated that the Elastic modulus is sensitive to the percentage of resilin and chitin content, their location and structural configuration. Based on our results, we propose that the distinct moduli of taenidia fibres indicate sophisticated evolution with elasticity playing a key role in optimization. STATEMENT OF SIGNIFICANCE: In crickets and bush-crickets, the foreleg tracheae have evolved into acoustic canals, which transport sound to the ears located on the tibia of each leg. Tracheae are held open by spiral cuticular micro-fibres called taenidia, which are the primary elements of mechanical reinforcement. We developed an AFM-based method to indent individual taenidia at the nanometre level, to quantify local mechanical properties of the interior acoustic canal of the bush-cricket Mecopoda elongata, a model species in hearing research. Taenidia fibres were immobilized on a hard substrate and the indenter directly approached the epicuticle surface. This is the first characterization of the nano-structure of unfixed tracheal taenidia, and should pave the way for further in vivo mechanical investigations of auditory structures.


Assuntos
Acústica , Traqueia , Microscopia de Força Atômica/métodos , Traqueia/fisiologia , Módulo de Elasticidade , Elasticidade , Quitina
10.
Elife ; 112022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170144

RESUMO

Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20-30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.


Assuntos
Quirópteros , Ecolocação , Ortópteros , Animais , Audição , Comportamento Predatório
11.
PLoS One ; 17(8): e0270498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947546

RESUMO

Determining the acoustic ecology of extinct or rare species is challenging due to the inability to record their acoustic signals or hearing thresholds. Katydids and their relatives (Orthoptera: Ensifera) offer a model for inferring acoustic ecology of extinct and rare species, due to allometric parameters of their sound production organs. Here, the bioacoustics of the orthopteran Prophalangopsis obscura are investigated. This species is one of only eight remaining members of an ancient family with over 90 extinct species that dominated the acoustic landscape of the Jurassic. The species is known from only a single confirmed specimen-the 150-year-old holotype material housed at the London Natural History Museum. Using Laser-Doppler Vibrometry, 3D surface scanning microscopy, and known scaling relationships, it is shown that P. obscura produces a pure-tone song at a frequency of ~4.7 kHz. This frequency range is distinct but comparable to the calls of Jurassic relatives, suggesting a limitation of early acoustic signals in insects to sonic frequencies (<20 kHz). The acoustic ecology and importance of this species in understanding ensiferan evolution, is discussed.


Assuntos
Ortópteros , Acústica , Animais , Aves , Insetos , Som
12.
iScience ; 25(9): 104746, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36034233

RESUMO

Hearing loss is not unique to humans and is experienced by all animals in the face of wild and eclectic differences in ear morphology. Here, we exploited the high throughput and accessible tympanal ear of the desert locust, Schistocerca gregaria to rigorously quantify changes in the auditory system due to noise exposure and age. In this exploratory study, we analyzed tympanal displacements, morphology of the auditory Müller's organ and measured activity of the auditory nerve, the transduction current, and electrophysiological properties of individual auditory receptors. This work shows that hearing loss manifests as a complex disorder due to differential effects of age and noise on several processes and cell types within the ear. The "middle-aged deafness" pattern of hearing loss found in locusts mirrors that found for humans exposed to noise early in their life suggesting a fundamental interaction of the use of an auditory system (noise) and its aging.

13.
Proc Biol Sci ; 289(1973): 20220398, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473380

RESUMO

Ensiferan orthopterans offer a key study system for acoustic communication and the process of insect hearing. Cyphoderris monstrosa (Hagloidea) belongs to a relict ensiferan family and is often used for evolutionary comparisons between bushcrickets (Tettigoniidae) and their ancestors. Understanding how this species processes sound is therefore vital to reconstructing the evolutionary history of ensiferan hearing. Previous investigations have found a mismatch in the ear of this species, whereby neurophysiological and tympanal tuning does not match the conspecific communication frequency. However, the role of the whole tympanum in signal reception remains unknown. Using laser Doppler vibrometry, we show that the tympana are tonotopic, with higher frequencies being received more distally. The tympana use two key modalities to mechanically separate sounds into two auditory receptor populations. Frequencies below approximately 8 kHz generate a basic resonant mode in the proximal end of the tympanum, whereas frequencies above approximately 8 kHz generate travelling waves in the distal region. Micro-CT imaging of the ear and the presented data suggest that this tonotopy of the tympana drive the tonotopic mechanotransduction of the crista acustica (CA). This mechanism represents a functional intermediate between simple tuned tympana and the complex tonotopy of the bushcricket CA.


Assuntos
Orelha Interna , Gryllidae , Animais , Orelha Média , Gryllidae/fisiologia , Mecanotransdução Celular , Vibração
14.
Front Insect Sci ; 2: 957385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468802

RESUMO

Bush-crickets (or katydids) have sophisticated and ultrasonic ears located in the tibia of their forelegs, with a working mechanism analogous to the mammalian auditory system. Their inner-ears are endowed with an easily accessible hearing organ, the crista acustica (CA), possessing a spatial organisation that allows for different frequencies to be processed at specific graded locations within the structure. Similar to the basilar membrane in the mammalian ear, the CA contains mechanosensory receptors which are activated through the frequency dependent displacement of the CA. While this tonotopical arrangement is generally attributed to the gradual stiffness and mass changes along the hearing organ, the mechanisms behind it have not been analysed in detail. In this study, we take a numerical approach to investigate this mechanism in the Copiphora gorgonensis ear. In addition, we propose and test the effect of the different vibration transmission mechanisms on the displacement of the CA. The investigation was carried out by conducting finite-element analysis on a three-dimensional, idealised geometry of the C. gorgonensis inner-ear, which was based on precise measurements. The numerical results suggested that (i) even the mildest assumptions about stiffness and mass gradients allow for tonotopy to emerge, and (ii) the loading area and location for the transmission of the acoustic vibrations play a major role in the formation of tonotopy.

15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658360

RESUMO

Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, [Formula: see text]). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess [Formula: see text] fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.


Assuntos
Estruturas Animais , Meato Acústico Externo , Gryllidae , Audição/fisiologia , Membrana Timpânica , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Meato Acústico Externo/anatomia & histologia , Meato Acústico Externo/fisiologia , Gryllidae/anatomia & histologia , Gryllidae/fisiologia , Membrana Timpânica/anatomia & histologia , Membrana Timpânica/fisiologia
16.
J Exp Biol ; 224(Pt 2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33443038

RESUMO

The use of acoustics in predator evasion is a widely reported phenomenon amongst invertebrate taxa, but the study of ultrasonic anti-predator acoustics is often limited to the prey of bats. Here, we describe the acoustic function and morphology of a unique stridulatory structure - the Ander's organ - in the relict orthopteran Cyphoderris monstrosa (Ensifera, Hagloidea). This species is one of just eight remaining members of the family Prophalangopsidae, a group with a fossil record of over 90 extinct species widespread during the Jurassic period. We reveal that the sound produced by this organ has the characteristics of a broadband ultrasonic anti-predator defence, with a peak frequency of 58±15.5 kHz and a bandwidth of 50 kHz (at 10 dB below peak). Evidence from sexual dimorphism, knowledge on hearing capabilities and assessment of local predators, suggests that the signal likely targets ground-dwelling predators. Additionally, we reveal a previously undescribed series of cavities underneath the organ that probably function as a mechanism for ultrasound amplification. Morphological structures homologous in both appearance and anatomical location to the Ander's organ are observed to varying degrees in 4 of the 7 other extant members of this family, with the remaining 3 yet to be assessed. Therefore, we suggest that such structures may either be more widely present in this ancient family than previously assumed, or have evolved to serve a key function in the long-term survival of these few species, allowing them to outlive their extinct counterparts.


Assuntos
Quirópteros , Ortópteros , Acústica , Animais , Aves , Comportamento Predatório , Som
17.
J Infect Dis ; 213(5): 788-93, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494775

RESUMO

BACKGROUND: Hyperlactatemia is a strong predictor of mortality in severe falciparum malaria. Sequestered parasitized erythrocytes and reduced uninfected red blood cell deformability (RCD) compromise microcirculatory flow, leading to anaerobic glycolysis. METHODS: In a cohort of patients with falciparum malaria hospitalized in Chittagong, Bangladesh, bulk RCD was measured using a laser diffraction technique, and parasite biomass was estimated from plasma concentrations of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). A multiple linear regression model was constructed to examine their associations with plasma lactate concentrations. RESULTS: A total of 286 patients with falciparum malaria were studied, of whom 224 had severe malaria, and 70 died. Hyperlactatemia (lactate level, ≥ 4 mmol/L) was present in 111 cases. RCD at shear stresses of 1.7 Pa and 30 Pa was reduced significantly in patients who died, compared with survivors, individuals with uncomplicated malaria, or healthy individuals (P < .05, for all comparisons). Multiple linear regression analysis showed that the plasma PfHRP2 level, parasitemia level, total bilirubin level, and RCD at a shear stress of 1.7 Pa were each independently correlated with plasma lactate concentrations (n = 278; R(2) = 0.35). CONCLUSIONS: Sequestration of parasitized red blood cells and reduced RCD both contribute to decreased microcirculatory flow in severe disease.


Assuntos
Deformação Eritrocítica/fisiologia , Lactatos/sangue , Malária Falciparum/patologia , Adulto , Bangladesh/epidemiologia , Feminino , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...