Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719917

RESUMO

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Assuntos
Proteínas de Choque Térmico Pequenas , Cristalino , alfa-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Cristalino/metabolismo
2.
Elife ; 112022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723573

RESUMO

Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol's molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol's primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.


Assuntos
Catarata , Cristalino , Catarata/metabolismo , Humanos , Inositol/análise , Inositol/metabolismo , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Agregados Proteicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-30833458

RESUMO

Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico Pequenas/química , Humanos , Concentração de Íons de Hidrogênio , Metais/metabolismo , Oxirredução , Estresse Oxidativo , Fosforilação , Conformação Proteica
5.
Protein Sci ; 24(11): 1841-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26350294

RESUMO

Protein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound ß-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C-proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N-proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site-specific mutants of HpmA265. By correlating the effect of individual site-specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C-terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C-terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N-proximal polar core subdomain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteus mirabilis/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Desdobramento de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...