Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 20(4): 1085-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20889433

RESUMO

This paper describes a new, physically interpretable, fully automatic algorithm for removal of tissue autofluorescence (AF) from fluorescence microscopy images, by non-negative matrix factorization. Measurement of signal intensities from the concentration of certain fluorescent reporter molecules at each location within a sample of biological tissue is confounded by fluorescence produced by the tissue itself (autofluorescence). Spectral mixing models use mixing coefficients to specify how much fluorescence from each source is present and unmixing algorithms separate the two fluorescent sources. Current spectral unmixing methods for AF removal often require a priori knowledge of mixing coefficients. Those which do not, such as principal component analysis, generate negative mixing coefficients that are not physically meaningful. Non-negative matrix factorization constrains mixing coefficients to be non-negative, and has been used for spectral unmixing, but not AF removal. This paper describes a novel non-negative matrix factorization algorithm which separates fluorescent images into true signal and AF components utilizing an estimate of the dark current. We also present a test-bed, based on fluorescent beads, to compare the performance of different AF removal algorithms. Our algorithm out-performed previous state of the art on validation images.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Sensibilidade e Especificidade
2.
Proc Natl Acad Sci U S A ; 104(51): 20167-72, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18056803

RESUMO

We describe two recently proposed randomized algorithms for the construction of low-rank approximations to matrices, and demonstrate their application (inter alia) to the evaluation of the singular value decompositions of numerically low-rank matrices. Being probabilistic, the schemes described here have a finite probability of failure; in most cases, this probability is rather negligible (10(-17) is a typical value). In many situations, the new procedures are considerably more efficient and reliable than the classical (deterministic) ones; they also parallelize naturally. We present several numerical examples to illustrate the performance of the schemes.

3.
J Neurotrauma ; 24(2): 421-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17376004

RESUMO

Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.


Assuntos
Axônios/fisiologia , Modelos Neurológicos , Fibras Nervosas/fisiologia , Regeneração/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Computação Matemática , Vias Neurais/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA