Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38241079

RESUMO

Transmissibility, the ability to spread within host populations, is a prerequisite for a pathogen to have epidemic or pandemic potential. Here, we estimate the phylogenies of human infectivity and transmissibility using 1,408 genome sequences from 743 distinct RNA virus species/types in 59 genera. By repeating this analysis using data sets censored by virus discovery date, we explore how temporal changes in the known diversity of RNA viruses-especially recent increases in recognized nonhuman viruses-have altered these phylogenies. Over time, we find significant increases in the proportion of RNA virus genera estimated to have a nonhuman-infective ancestral state, in the fraction of distinct human virus lineages that are purely human-transmissible or strictly zoonotic (compared to mixed lineages), and in the number of human viruses with nearest relatives known not to infect humans. Our results are consistent with viruses that are capable of spreading in human populations commonly emerging from a nonhuman reservoir. This is more likely in lineages that already contain human-transmissible viruses but is rare in lineages that contain only strictly zoonotic viruses.


Assuntos
Infecções por Orthomyxoviridae , Vírus de RNA , Humanos , Infecções por Orthomyxoviridae/epidemiologia , RNA , Vírus de RNA/genética , Pandemias , Filogenia
2.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
3.
One Health ; 17: 100639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024252

RESUMO

Antibiotic usage in livestock has been suggested as a driver of antimicrobial resistance in human and livestock populations. This has contributed to the implementation of stewardship programs to curtail usage of antibiotics in livestock. However, the consequences of antibiotic curtailment in livestock on human health are poorly understood. There is the potential for increases in the carriage of pathogens such as Salmonella spp. in livestock, and subsequent increases in human foodborne disease. We use a mathematical model fitted to four case studies, ampicillin and tetracycline usage in fattening pig and broiler poultry populations, to explore the impact of curtailing antibiotic usage in livestock on salmonellosis in humans. Increases in the daily incidence of salmonellosis and a decrease in the proportion of resistant salmonellosis were identified following curtailment of antibiotic usage in livestock. The extent of these increases in human foodborne disease ranged from negligible, to controllable through interventions to target the farm-to-fork pathway. This study provides a motivating example of one plausible scenario following curtailment of antibiotic usage in livestock and suggests that a focus on ensuring good farm-to-fork hygiene and livestock biosecurity is sufficient to mitigate the negative human health consequences of antibiotic stewardship in livestock populations.

4.
Int J Equity Health ; 22(1): 205, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794428

RESUMO

BACKGROUND: Sars-CoV-2, the causative agent of COVID-19, has led to more than 226,000 deaths in the UK and multiple risk factors for mortality including age, sex and deprivation have been identified. This study aimed to identify which individual indicators of the Scottish Index of Multiple Deprivation (SIMD), an area-based deprivation index, were predictive of mortality. METHODS: This was a prospective cohort study of anonymised electronic health records of 710 consecutive patients hospitalised with Covid-19 disease between March and June 2020 in the Lothian Region of Southeast Scotland. Data sources included automatically extracted data from national electronic platforms and manually extracted data from individual admission records. Exposure variables of interest were SIMD quintiles and 12 indicators of deprivation deemed clinically relevant selected from the SIMD. Our primary outcome was mortality. Age and sex adjusted univariable and multivariable analyses were used to determine measures of association between exposures of interest and the primary outcome. RESULTS: After adjusting for age and sex, we found an increased risk of mortality in the more deprived SIMD quintiles 1 and 3 (OR 1.75, CI 0.99-3.08, p = 0.053 and OR 2.17, CI 1.22-3.86, p = 0.009, respectively), but this association was not upheld in our multivariable model containing age, sex, Performance Status and clinical parameters of severity at admission. Of the 12 pre-selected indicators of deprivation, two were associated with greater mortality in our multivariable analysis: income deprivation rate categorised by quartile (Q4 (most deprived): 2.11 (1.20-3.77) p = 0.011)) and greater than expected hospitalisations due to alcohol per SIMD data zone (1.96 (1.28-3.00) p = 0.002)). CONCLUSIONS: SIMD as an aggregate measure of deprivation was not predictive of mortality in our cohort when other exposure measures were accounted for. However, we identified a two-fold increased risk of mortality in patients residing in areas with greater income-deprivation and/or number of hospitalisations due to alcohol. In areas where aggregate measures fail to capture pockets of deprivation, exploring the impact of specific SIMD indicators may be helpful in targeting resources to residents at risk of poorer outcomes from Covid-19.


Assuntos
COVID-19 , Humanos , Estudos de Coortes , Fatores Socioeconômicos , Estudos Prospectivos , SARS-CoV-2 , Escócia/epidemiologia
5.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672388

RESUMO

For the last two decades, the human infection frequency of Escherichia coli O157 (O157) in Scotland has been 2.5-fold higher than in England and Wales. Results from national cattle surveys conducted in Scotland and England and Wales in 2014/2015 were combined with data on reported human clinical cases from the same time frame to determine if strain differences in national populations of O157 in cattle could be associated with higher human infection rates in Scotland. Shiga toxin subtype (Stx) and phage type (PT) were examined within and between host (cattle vs human) and nation (Scotland vs England and Wales). For a subset of the strains, whole genome sequencing (WGS) provided further insights into geographical and host association. All three major O157 lineages (I, II, I/II) and most sub-lineages (Ia, Ib, Ic, IIa, IIb, IIc) were represented in cattle and humans in both nations. While the relative contribution of different reservoir hosts to human infection is unknown, WGS analysis indicated that the majority of O157 diversity in human cases was captured by isolates from cattle. Despite comparable cattle O157 prevalence between nations, strain types were localized. PT21/28 (sub-lineage Ic, Stx2a+) was significantly more prevalent in Scottish cattle [odds ratio (OR) 8.7 (2.3-33.7; P<0.001] and humans [OR 2.2 (1.5-3.2); P<0.001]. In England and Wales, cattle had a significantly higher association with sub-lineage IIa strains [PT54, Stx2c; OR 5.6 (1.27-33.3); P=0.011] while humans were significantly more closely associated with sub-lineage IIb [PT8, Stx1 and Stx2c; OR 29 (4.9-1161); P<0.001]. Therefore, cattle farms in Scotland were more likely to harbour Stx2a+O157 strains compared to farms in E and W (P<0.001). There was evidence of limited cattle strain migration between nations and clinical isolates from one nation were more similar to cattle isolates from the same nation, with sub-lineage Ic (mainly PT21/28) exhibiting clear national association and evidence of local transmission in Scotland. While we propose the higher rate of O157 clinical cases in Scotland, compared to England and Wales, is a consequence of the nationally higher level of Stx2a+O157 strains in Scottish cattle, we discuss the multiple additional factors that may also contribute to the different infection rates between these nations.


Assuntos
Escherichia coli O157 , Humanos , Bovinos , Animais , Escherichia coli O157/genética , País de Gales/epidemiologia , Escócia/epidemiologia , Inglaterra/epidemiologia , Fazendas
6.
Sci Total Environ ; 902: 165978, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544442

RESUMO

The wastewater microbiome contains a multitude of resistant bacteria of human origin, presenting an opportunity for surveillance of resistance in the general population. However, wastewater microbial communities are also influenced by clinical sources, such as hospitals. Identifying signatures of the community and hospital resistome in wastewater is needed for interpretation and risk analysis. In this study, we compare the resistome and microbiome of hospital, community, and mixed municipal wastewater to investigate how and why the composition of these different sites differ. We conducted shotgun metagenomic analysis on wastewater samples from eight wastewater treatment plants (WWTPs), four hospitals, and four community sites in Scotland, using a paired sampling design. Cluster analysis and source attribution random forest models demonstrated that the hospital resistome was distinct from community and WWTP resistomes. Hospital wastewater had a higher abundance and diversity of resistance genes, in keeping with evidence that hospitals act as a reservoir and enricher of resistance. However, this distinctive 'hospital' signature appeared to be weak in the resistome of downstream WWTPs, likely due to dilution. We conclude that hospital and community wastewater resistomes differ, with the hospital wastewater representing a reservoir of patient- and hospital environment-associated bacteria. However, this 'hospital' signature is transient and does not overwhelm the community signature in the resistome of the downstream WWTP influent.


Assuntos
Esgotos , Águas Residuárias , Humanos , Esgotos/microbiologia , Bactérias/genética , Genes Bacterianos , Hospitais , Antibacterianos , Metagenômica
7.
Proc Natl Acad Sci U S A ; 120(29): e2218860120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37450494

RESUMO

Urbanization is predicted to be a key driver of disease emergence through human exposure to novel, animal-borne pathogens. However, while we suspect that urban landscapes are primed to expose people to novel animal-borne diseases, evidence for the mechanisms by which this occurs is lacking. To address this, we studied how bacterial genes are shared between wild animals, livestock, and humans (n = 1,428) across Nairobi, Kenya-one of the world's most rapidly developing cities. Applying a multilayer network framework, we show that low biodiversity (of both natural habitat and vertebrate wildlife communities), coupled with livestock management practices and more densely populated urban environments, promotes sharing of Escherichia coli-borne bacterial mobile genetic elements between animals and humans. These results provide empirical support for hypotheses linking resource provision, the biological simplification of urban landscapes, and human and livestock demography to urban dynamics of cross-species pathogen transmission at a landscape scale. Urban areas where high densities of people and livestock live in close association with synanthropes (species such as rodents that are more competent reservoirs for zoonotic pathogens) should be prioritized for disease surveillance and control.


Assuntos
Doenças dos Animais , Animais Selvagens , Animais , Humanos , Quênia/epidemiologia , Animais Selvagens/microbiologia , Ecossistema , Biodiversidade , Cidades , Urbanização , Gado/microbiologia
8.
BMJ Glob Health ; 8(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36963785

RESUMO

There is a current global push to identify and implement best practice for delivering maximum impact from development research in low-income and middle-income countries. Here, we describe a model of research and capacity building that challenges traditional approaches taken by western funders in Africa. Tackling Infections to Benefit Africa (TIBA) is a global health research and delivery partnership with a focus on strengthening health systems to combat neglected tropical diseases, malaria and emerging pathogens in Africa. Partners are academic and research institutions based in Ghana, Sudan, Rwanda, Uganda, Kenya, Tanzania, Zimbabwe, Botswana, South Africa and the UK. Fifteen other African countries have participated in TIBA activities. With a starting budget of under £7 million, and in just 4 years, TIBA has had a verified impact on knowledge, policy practice and capacity building, and on national and international COVID-19 responses in multiple African countries. TIBA's impact is shown in context-specific metrics including: strengthening the evidence base underpinning international policy on neglected tropical diseases; 77% of research publications having Africa-based first and/or last authors; postgraduate, postdoctoral and professional training; career progression for African researchers and health professionals with no net brain drain from participating countries; and supporting African institutions. Training in real-time SARS-CoV-2 viral genome sequencing provided new national capabilities and capacities that contributed to both national responses and global health security through variant detection and tracking. TIBA's experience confirms that health research for Africa thrives when the agenda and priorities are set in Africa, by Africans, and the work is done in Africa. Here, we share 10 actionable recommendations for researchers and funders from our lessons learnt.


Assuntos
COVID-19 , Saúde Global , Humanos , SARS-CoV-2 , Gana
11.
Nat Commun ; 13(1): 7251, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456547

RESUMO

Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genômica , Metagenoma
12.
BMC Med ; 20(1): 471, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482440

RESUMO

BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.


Assuntos
Gado , Saúde Única , Humanos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Quênia/epidemiologia , Farmacorresistência Bacteriana/genética
13.
Antibiotics (Basel) ; 11(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36290019

RESUMO

Antibiotic resistance is transmitted between animals and humans either directly or indirectly, through transmission via the environment. However, little is known about the contribution of the environment to resistance epidemiology. Here, we use a mathematical model to study the effect of the environment on human resistance levels and the impact of interventions to reduce antibiotic consumption in animals. We developed a model of resistance transmission with human, animal, and environmental compartments. We compared the model outcomes under different transmission scenarios, conducted a sensitivity analysis, and investigated the impacts of curtailing antibiotic usage in animals. Human resistance levels were most sensitive to parameters associated with the human compartment (rate of loss of resistance from humans) and with the environmental compartment (rate of loss of environmental resistance and rate of environment-to-human transmission). Increasing environmental transmission could lead to increased or reduced impact of curtailing antibiotic consumption in animals on resistance in humans. We highlight that environment-human sharing of resistance can influence the epidemiology of resistant bacterial infections in humans and reduce the impact of interventions that curtail antibiotic consumption in animals. More data on resistance in the environment and frequency of human-environment transmission is crucial to understanding antibiotic resistance dynamics.

14.
Microbiol Resour Announc ; 11(10): e0041622, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36094211

RESUMO

Here, we report the draft genome of ESEI_597, an enterotoxigenic Escherichia coli (ETEC) strain harboring genes encoding colonization surface antigen 13 (CS13) and a heat-labile toxin. The ESEI_597 strain was isolated from an 8-month-old child living in Korogocho, Kenya, in 2013.

16.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666108

RESUMO

Background: The variation in the pathogen type as well as the spatial heterogeneity of predictors make the generality of any associations with pathogen discovery debatable. Our previous work confirmed that the association of a group of predictors differed across different types of RNA viruses, yet there have been no previous comparisons of the specific predictors for RNA virus discovery in different regions. The aim of the current study was to close the gap by investigating whether predictors of discovery rates within three regions-the United States, China, and Africa-differ from one another and from those at the global level. Methods: Based on a comprehensive list of human-infective RNA viruses, we collated published data on first discovery of each species in each region. We used a Poisson boosted regression tree (BRT) model to examine the relationship between virus discovery and 33 predictors representing climate, socio-economics, land use, and biodiversity across each region separately. The discovery probability in three regions in 2010-2019 was mapped using the fitted models and historical predictors. Results: The numbers of human-infective virus species discovered in the United States, China, and Africa up to 2019 were 95, 80, and 107 respectively, with China lagging behind the other two regions. In each region, discoveries were clustered in hotspots. BRT modelling suggested that in all three regions RNA virus discovery was better predicted by land use and socio-economic variables than climatic variables and biodiversity, although the relative importance of these predictors varied by region. Map of virus discovery probability in 2010-2019 indicated several new hotspots outside historical high-risk areas. Most new virus species since 2010 in each region (6/6 in the United States, 19/19 in China, 12/19 in Africa) were discovered in high-risk areas as predicted by our model. Conclusions: The drivers of spatiotemporal variation in virus discovery rates vary in different regions of the world. Within regions virus discovery is driven mainly by land-use and socio-economic variables; climate and biodiversity variables are consistently less important predictors than at a global scale. Potential new discovery hotspots in 2010-2019 are identified. Results from the study could guide active surveillance for new human-infective viruses in local high-risk areas. Funding: FFZ is funded by the Darwin Trust of Edinburgh (https://darwintrust.bio.ed.ac.uk/). MEJW has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 874735 (VEO) (https://www.veo-europe.eu/).


Assuntos
Vírus de RNA , Vírus , África , Biodiversidade , Humanos , Probabilidade , RNA , Estados Unidos
17.
J R Soc Med ; 115(11): 429-438, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502909

RESUMO

OBJECTIVES: COVID-19 has resulted in the greatest disruption to National Health Service (NHS) care in its over 70-year history. Building on our previous work, we assessed the ongoing impact of pandemic-related disruption on provision of emergency and elective hospital-based care across Scotland over the first year of the pandemic. DESIGN: We undertook interrupted time-series analyses to evaluate the impact of ongoing pandemic-related disruption on hospital NHS care provision at national level and across demographics and clinical specialties spanning the period 29 March 2020-28 March 2021. SETTING: Scotland, UK. PARTICIPANTS: Patients receiving hospital care from NHS Scotland. MAIN OUTCOME MEASURES: We used the percentage change of accident and emergency attendances, and emergency and planned hospital admissions during the pandemic compared to the average admission rate for equivalent weeks in 2018-2019. RESULTS: As restrictions were gradually lifted in Scotland after the first lockdown, hospital-based admissions increased approaching pre-pandemic levels. Subsequent tightening of restrictions in September 2020 were associated with a change in slope of relative weekly admissions rate: -1.98% (-2.38, -1.58) in accident and emergency attendance, -1.36% (-1.68, -1.04) in emergency admissions and -2.31% (-2.95, -1.66) in planned admissions. A similar pattern was seen across sex, socioeconomic status and most age groups, except children (0-14 years) where accident and emergency attendance, and emergency admissions were persistently low over the study period. CONCLUSIONS: We found substantial disruption to urgent and planned inpatient healthcare provision in hospitals across NHS Scotland. There is the need for urgent policy responses to address continuing unmet health needs and to ensure resilience in the context of future pandemics.


Assuntos
COVID-19 , Admissão do Paciente , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Pandemias , Medicina Estatal , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Hospitais , Escócia/epidemiologia , Serviço Hospitalar de Emergência
18.
Int Arch Allergy Immunol ; 183(9): 1007-1016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584611

RESUMO

BACKGROUND: Exposure to fungal allergens poses a serious threat to human health, especially to mould-allergic individuals. The prevalence of fungal allergic disease is increasing globally but is poorly studied in Africa. Here, we aimed to identify and characterize fungal proteins that were immunoreactive against serum samples from fungal-sensitized Zimbabweans from Shamva district to inform the development of diagnostics and therapeutics. METHODS: Crude protein extracts of the Ascomycota Aspergillus fumigatus, Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Penicillium chrysogenum, and Saccharomyces cerevisiae as well as mucoromycota Rhizopus nigricans were individually separated by one-dimensional gel electrophoresis for protein staining and immunoblotting. A pool of eight sera from fungi-sensitive Zimbabwean children aged 3-5 years was used to screen the crude extracts to determine their immunoreactivity. Protein bands recognized by the sera were subjected to mass spectrometry to identify the individual proteins reactive with the sera. RESULTS: The pooled serum sample reacted with 20 bands, which resolved to 34 distinct proteins, most of which were novel immunogens. The pool was most reactive to A. alternata. The proteins identified included peptidases (8/34), hydrolases (6/34), oxidoreductases (5/34), and glucosidases (4/34), while 11/34 were unknown. Eight of the proteins were predicted to be allergens using the Structural Database of Allergenic Proteins (SDAP). CONCLUSIONS: We identified novel immunogens from fungi expanding the number of known fungal allergens. These form a potential basis for diagnostics specific for the Zimbabwean population. Validation assays will now need to be carried out to further evaluate the cross-reactivity of the identified allergen candidates as well as investigate their potential recognition in a larger cohort of patients. Furthermore, there is now a need to conduct studies relating sensitization to these immunogens and clinical diseases in the population.


Assuntos
Proteínas Fúngicas , Hipersensibilidade , Alérgenos , Antígenos de Fungos , Criança , Fungos , Humanos , Imunoglobulina E , Zimbábue/epidemiologia
19.
Lancet Infect Dis ; 22(7): 959-966, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468332

RESUMO

BACKGROUND: Since its emergence in November, 2021, in southern Africa, the SARS-CoV-2 omicron variant of concern (VOC) has rapidly spread across the world. We aimed to investigate the severity of omicron and the extent to which booster vaccines are effective in preventing symptomatic infection. METHODS: In this study, using the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform, we did a cohort analysis with a nested test-negative design incident case-control study covering the period Nov 1-Dec 19, 2021, to provide initial estimates of omicron severity and the effectiveness of vaccine boosters against symptomatic disease relative to 25 weeks or more after the second vaccine dose. Primary care data derived from 940 general practices across Scotland were linked to laboratory data and hospital admission data. We compared outcomes between infection with the delta VOC (defined as S-gene positive) and the omicron VOC (defined as S-gene negative). We assessed effectiveness against symptomatic SARS-CoV-2 infection, with infection confirmed through a positive RT-PCR. FINDINGS: By Dec 19, 2021, there were 23 840 S-gene-negative cases in Scotland, which were predominantly among those aged 20-39 years (11 732 [49·2%]). The proportion of S-gene-negative cases that were possible reinfections was more than ten times that of S-gene-positive cases (7·6% vs 0·7%; p<0·0001). There were 15 hospital admissions in S-gene-negative individuals, giving an adjusted observed-to-expected admissions ratio of 0·32 (95% CI 0·19-0·52). The booster vaccine dose was associated with a 57% (54-60) reduction in the risk of symptomatic S-gene-negative infection relative to individuals who tested positive 25 weeks or more after the second vaccine dose. INTERPRETATION: These early national data suggest that omicron is associated with a two-thirds reduction in the risk of COVID-19 hospitalisation compared with delta. Although offering the greatest protection against delta, the booster dose of vaccination offers substantial additional protection against the risk of symptomatic COVID-19 for omicron compared with 25 weeks or more after the second vaccine dose. FUNDING: Health Data Research UK, National Core Studies, Public Health Scotland, Scottish Government, UK Research and Innovation, and University of Edinburgh.


Assuntos
COVID-19 , Vacinas contra Influenza , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Estudos de Coortes , Humanos , SARS-CoV-2/genética , Escócia/epidemiologia
20.
Nat Microbiol ; 7(4): 581-589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288654

RESUMO

Quantitative evidence for the risk of zoonoses and the spread of antimicrobial resistance remains lacking. Here, as part of the UrbanZoo project, we sampled Escherichia coli from humans, livestock and peri-domestic wildlife in 99 households across Nairobi, Kenya, to investigate its distribution among host species in this rapidly developing urban landscape. We performed whole-genome sequencing of 1,338 E. coli isolates and found that the diversity and sharing patterns of E. coli were heavily structured by household and strongly shaped by host type. We also found evidence for inter-household and inter-host sharing and, importantly, between humans and animals, although this occurs much less frequently. Resistome similarity was differently distributed across host and household, consistent with being driven by shared exposure to antimicrobials. Our results indicate that a large, epidemiologically structured sampling framework combined with WGS is needed to uncover strain-sharing events among different host populations in complex environments and the major contributing pathways that could ultimately drive the emergence of zoonoses and the spread of antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Quênia/epidemiologia , Gado , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...