Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4401, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388562

RESUMO

Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.


Assuntos
Hélio , Proteínas , Raios X , Difração de Raios X , Lasers
2.
J Synchrotron Radiat ; 31(Pt 2): 222-232, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306300

RESUMO

This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.

3.
Light Sci Appl ; 13(1): 15, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216563

RESUMO

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.

4.
Nano Lett ; 23(13): 5943-5950, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350548

RESUMO

Dynamics of optically excited plasmonic nanoparticles are presently understood as a series of scattering events involving the initiation of nanoparticle breathing oscillations. According to established models, these are caused by statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot-electron pressure accounts for phase mismatches between theory and experimental observations. However, direct experimental studies resolving the breathing-oscillation excitation are still missing. We used optical transient-absorption spectroscopy and time-resolved single-particle X-ray diffractive imaging to access the electron system and lattice. The time-resolved single-particle imaging data provided structural information directly on the onset of the breathing oscillation and confirmed the need for an additional excitation mechanism for thermal expansion. We developed a new model that reproduces all of our experimental observations. We identified optically induced electron density gradients as the initial driving source.

5.
IUCrJ ; 9(Pt 2): 204-214, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371510

RESUMO

One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.

6.
J Appl Crystallogr ; 54(Pt 6): 1730-1737, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963765

RESUMO

Single-particle X-ray diffractive imaging (SPI) of small (bio-)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens-stack injectors are used for NP injection. However, current injectors were developed for larger NPs (>100 nm), and their ability to generate high-density NP beams suffers with decreasing NP size. Here, an aerodynamic lens-stack injector with variable geometry and a geometry-optimization procedure are presented. The optimization for 50 nm gold-NP (AuNP) injection using a numerical-simulation infrastructure capable of calculating the carrier-gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard-installation 'Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle-beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens-stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI.

7.
Struct Dyn ; 7(2): 024304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32341941

RESUMO

X-ray free-electron lasers promise diffractive imaging of single molecules and nanoparticles with atomic spatial resolution. This relies on the averaging of millions of diffraction patterns of identical particles, which should ideally be isolated in the gas phase and preserved in their native structure. Here, we demonstrated that polystyrene nanospheres and Cydia pomonella granulovirus can be transferred into the gas phase, isolated, and very quickly shock-frozen, i.e., cooled to 4 K within microseconds in a helium-buffer-gas cell, much faster than state-of-the-art approaches. Nanoparticle beams emerging from the cell were characterized using particle-localization microscopy with light-sheet illumination, which allowed for the full reconstruction of the particle beams, focused to < 100 µ m , as well as for the determination of particle flux and number density. The experimental results were quantitatively reproduced and rationalized through particle-trajectory simulations. We propose an optimized setup with cooling rates for particles of few-nanometers on nanosecond timescales. The produced beams of shock-frozen isolated nanoparticles provide a breakthrough in sample delivery, e.g., for diffractive imaging and microscopy or low-temperature nanoscience.

8.
Opt Express ; 27(25): 36580-36586, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873433

RESUMO

Imaging biological molecules in the gas-phase requires novel sample delivery methods, which generally have to be characterized and optimized to produce high-density particle beams. A non-destructive characterization method of the transverse particle beam profile is presented. It enables the characterization of the particle beam in parallel to the collection of, for instance, x-ray-diffraction patterns. As a rather simple experimental method, it requires the generation of a small laser-light sheet using a cylindrical telescope and a microscope. The working principle of this technique was demonstrated for the characterization of the fluid-dynamic-focusing behavior of 220 nm polystyrene beads as prototypical nanoparticles. The particle flux was determined and the velocity distribution was calibrated using Mie-scattering calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...