Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Neurosci ; 27(2): 249-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238430

RESUMO

Sleep interacts reciprocally with immune system activity, but its specific relationship with microglia-the resident immune cells in the brain-remains poorly understood. Here, we show in mice that microglia can regulate sleep through a mechanism involving Gi-coupled GPCRs, intracellular Ca2+ signaling and suppression of norepinephrine transmission. Chemogenetic activation of microglia Gi signaling strongly promoted sleep, whereas pharmacological blockade of Gi-coupled P2Y12 receptors decreased sleep. Two-photon imaging in the cortex showed that P2Y12-Gi activation elevated microglia intracellular Ca2+, and blockade of this Ca2+ elevation largely abolished the Gi-induced sleep increase. Microglia Ca2+ level also increased at natural wake-to-sleep transitions, caused partly by reduced norepinephrine levels. Furthermore, imaging of norepinephrine with its biosensor in the cortex showed that microglia P2Y12-Gi activation significantly reduced norepinephrine levels, partly by increasing the adenosine concentration. These findings indicate that microglia can regulate sleep through reciprocal interactions with norepinephrine transmission.


Assuntos
Cálcio , Microglia , Camundongos , Animais , Norepinefrina , Transdução de Sinais/fisiologia , Sono
2.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108093, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787963

RESUMO

The ability to modify behavior as a result of previous experience allows an organism to adapt to changes in its environment. Even innate behaviors, like feeding initiation, can change if previously associated with a noxious stimulus. Here, we describe a taste memory assay pairing appetitive and bitter tastants, resulting in aversive taste conditioning. By training a fly to associate sweet sucrose applied to the tarsus with bitter quinine applied to the proboscis, flies quickly learn to suppress the reflexive proboscis extension to sucrose, providing a bioassay for behavioral and molecular plasticity. This single-fly taste memory assay may be applied to adult Drosophila of any genetic background and allows for interrogation of the neural circuitry and molecular processes encoding memories while simultaneously measuring behavior. Unlike many other memory assays, this system requires few custom components, and therefore can be easily established in laboratories with minimal expertise in the study of fly behavior.


Assuntos
Drosophila , Paladar , Animais , Percepção Gustatória , Sacarose , Drosophila melanogaster
3.
Cold Spring Harb Protoc ; 2023(6): pdb.top107864, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787965

RESUMO

Peripheral detection of tastants allows animals to detect the dietary value of food and its potential toxicity. Many tastants such as sugars and fats elicit reflexive appetitive responses, whereas other foods such as quinine induce aversion. The relative value of food can change in accordance with an animal's internal state and prior experience. Understanding the neural and genetic bases for the detection and response to tastants, as well as how these behaviors change with experience, is central to sensory neuroscience. The presentation of attractive tastants to the proboscis or legs of the fruit fly Drosophila melanogaster induces a robust and reflexive proboscis-extension response (PER). This quantifiable response can be used to study the receptors underlying taste detection, the neural circuits involved in sensory processing, and the musculature required for a simple feeding behavior. Furthermore, we have developed a memory assay pairing appetitive and bitter tastants, resulting in aversive taste conditioning, in which the PER response to attractive tastants is diminished. Unlike many memory assays, this assay does not require specialized equipment and can be readily implemented in teaching and research laboratories. Here, we introduce protocols for studying the PER feeding response and aversive taste memory in Drosophila.


Assuntos
Drosophila , Paladar , Animais , Paladar/genética , Drosophila melanogaster/genética , Percepção Gustatória/genética , Comportamento Alimentar/fisiologia
4.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108092, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787966

RESUMO

The ability to distinguish between food sources that are good and provide nutrients and those that are potentially dangerous is crucial to the survival of an organism. Here, we describe a taste assay that measures the reflexive feeding response to a given tastant. To examine taste preference for a soluble compound, an appetitive tastant is applied to the proboscis, and the proportion of proboscis extensions are recorded. This single-fly assay may be applied to adult Drosophila of any genetic background and facilities examination of the neural circuitry and molecular processes encoding the reflexive taste response. Furthermore, this assay requires few custom components and therefore can be easily established in laboratories with minimal expertise in the study of fly behavior.


Assuntos
Drosophila , Paladar , Animais , Paladar/fisiologia , Percepção Gustatória/fisiologia , Comportamento Alimentar/fisiologia , Bioensaio , Drosophila melanogaster
5.
PLoS One ; 16(5): e0251296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038425

RESUMO

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Assuntos
COVID-19/diagnóstico , Avaliação de Programas e Projetos de Saúde , Saliva/virologia , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Normas Sociais , Inquéritos e Questionários , Universidades , Adulto Jovem
6.
Sci Transl Med ; 12(558)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848093

RESUMO

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Animais , Feminino , Masculino , Camundongos , Caracteres Sexuais , Testículo , Cromossomo X/genética , Cromossomo Y
7.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627643

RESUMO

Alzheimer's disease (AD) begins several decades before the onset of clinical symptoms, at a time when women may still undergo reproductive cycling. Whether ovarian functions alter substrates of AD pathogenesis is unknown. Here we show that ovarian cycle stages significantly modulate AD-related alterations in neural network patterns, cognitive impairments, and pathogenic protein production in the hAPP-J20 mouse model of AD. Female hAPP mice spent more time in estrogen-dominant cycle stages and these ovarian stages worsened AD-related network dysfunction and cognitive impairments. In contrast, progesterone-dominant stages and gonadectomy attenuated these AD-related deficits. Further studies revealed a direct role for estradiol in stimulating neural network excitability and susceptibility to seizures in hAPP mice and increasing amyloid beta levels. Understanding dynamic effects of the ovarian cycle on the female nervous system in disease, including AD, is of critical importance and may differ from effects on a healthy brain. The pattern of ovarian cycle effects on disease-related networks, cognition, and pathogenic protein expression may be relevant to young women at risk for AD.


Assuntos
Doença de Alzheimer/complicações , Ondas Encefálicas/fisiologia , Encéfalo/patologia , Transtornos Cognitivos , Ciclo Menstrual/fisiologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Castração , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Convulsivantes/toxicidade , Modelos Animais de Doenças , Estradiol/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Humanos , Ciclo Menstrual/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Pentilenotetrazol/toxicidade , Progesterona/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
8.
Neuron ; 93(6): 1388-1404.e10, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28285823

RESUMO

Synaptic connections undergo activity-dependent plasticity during development and learning, as well as homeostatic re-adjustment to ensure stability. Little is known about the relationship between these processes, particularly in vivo. We addressed this with novel quantal resolution imaging of transmission during locomotive behavior at glutamatergic synapses of the Drosophila larval neuromuscular junction. We find that two motor input types, Ib and Is, provide distinct forms of excitatory drive during crawling and differ in key transmission properties. Although both inputs vary in transmission probability, active Is synapses are more reliable. High-frequency firing "wakes up" silent Ib synapses and depresses Is synapses. Strikingly, homeostatic compensation in presynaptic strength only occurs at Ib synapses. This specialization is associated with distinct regulation of postsynaptic CaMKII. Thus, basal synaptic strength, short-term plasticity, and homeostasis are determined input-specifically, generating a functional diversity that sculpts excitatory transmission and behavioral function.


Assuntos
Drosophila melanogaster , Homeostase/fisiologia , Locomoção/fisiologia , Junção Neuromuscular/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Larva/citologia , Larva/fisiologia , Inibição Neural/fisiologia , Junção Neuromuscular/metabolismo , Transmissão Sináptica
9.
Curr Biol ; 25(22): 2928-38, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26526372

RESUMO

Sleep is thought to be controlled by two main processes: a circadian clock that primarily regulates sleep timing and a homeostatic mechanism that detects and responds to sleep need. Whereas abundant experimental evidence suggests that sleep need increases with time spent awake, the contributions of different brain arousal systems have not been assessed independently of each other to determine whether certain neural circuits, rather than waking per se, selectively contribute to sleep homeostasis. Using the fruit fly, Drosophila melanogaster, we found that sustained thermogenetic activation of three independent neurotransmitter systems promoted nighttime wakefulness. However, only sleep deprivation resulting from activation of cholinergic neurons was sufficient to elicit subsequent homeostatic recovery sleep, as assessed by multiple behavioral criteria. In contrast, sleep deprivation resulting from activation of octopaminergic neurons suppressed homeostatic recovery sleep, indicating that wakefulness can be dissociated from accrual of sleep need. Neurons that promote sleep homeostasis were found to innervate the central brain and motor control regions of the thoracic ganglion. Blocking activity of these neurons suppressed recovery sleep but did not alter baseline sleep, further differentiating between neural control of sleep homeostasis and daily fluctuations in the sleep/wake cycle. Importantly, selective activation of wake-promoting neurons without engaging the sleep homeostat impaired subsequent short-term memory, thus providing evidence that neural circuits that regulate sleep homeostasis are important for behavioral plasticity. Together, our data suggest a neural circuit model involving distinct populations of wake-promoting neurons, some of which are involved in homeostatic control of sleep and cognition.


Assuntos
Drosophila melanogaster/fisiologia , Sono/fisiologia , Animais , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Ritmo Circadiano , Homeostase/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Animais , Neurônios/fisiologia , Receptores de Amina Biogênica/fisiologia , Vigília/fisiologia
10.
Curr Biol ; 25(11): 1535-41, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25981787

RESUMO

Taste memories allow animals to modulate feeding behavior in accordance with past experience and avoid the consumption of potentially harmful food [1]. We have developed a single-fly taste memory assay to functionally interrogate the neural circuitry encoding taste memories [2]. Here, we screen a collection of Split-GAL4 lines that label small populations of neurons associated with the fly memory center-the mushroom bodies (MBs) [3]. Genetic silencing of PPL1 dopamine neurons disrupts conditioned, but not naive, feeding behavior, suggesting these neurons are selectively involved in the conditioned taste response. We identify two PPL1 subpopulations that innervate the MB α lobe and are essential for aversive taste memory. Thermogenetic activation of these dopamine neurons during training induces memory, indicating these neurons are sufficient for the reinforcing properties of bitter tastant to the MBs. Silencing of either the intrinsic MB neurons or the output neurons from the α lobe disrupts taste conditioning. Thermogenetic manipulation of these output neurons alters naive feeding response, suggesting that dopamine neurons modulate the threshold of response to appetitive tastants. Taken together, these findings detail a neural mechanism underlying the formation of taste memory and provide a functional model for dopamine-dependent plasticity in Drosophila.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Memória/fisiologia , Percepção Gustatória/fisiologia , Animais , Feminino
11.
J Neurosci ; 35(6): 2358-71, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673831

RESUMO

Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Cognição/fisiologia , Glucuronidase/fisiologia , Longevidade/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/psicologia , Humanos , Proteínas Klotho , Longevidade/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/patologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/patologia , Proteínas tau/metabolismo
12.
Cell Rep ; 7(4): 1065-76, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813892

RESUMO

Aging is the primary risk factor for cognitive decline, an emerging health threat to aging societies worldwide. Whether anti-aging factors such as klotho can counteract cognitive decline is unknown. We show that a lifespan-extending variant of the human KLOTHO gene, KL-VS, is associated with enhanced cognition in heterozygous carriers. Because this allele increased klotho levels in serum, we analyzed transgenic mice with systemic overexpression of klotho. They performed better than controls in multiple tests of learning and memory. Elevating klotho in mice also enhanced long-term potentiation, a form of synaptic plasticity, and enriched synaptic GluN2B, an N-methyl-D-aspartate receptor (NMDAR) subunit with key functions in learning and memory. Blockade of GluN2B abolished klotho-mediated effects. Surprisingly, klotho effects were evident also in young mice and did not correlate with age in humans, suggesting independence from the aging process. Augmenting klotho or its effects may enhance cognition and counteract cognitive deficits at different life stages.


Assuntos
Cognição/fisiologia , Glucuronidase/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Coortes , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Expectativa de Vida , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
13.
Biol Sex Differ ; 3(1): 24, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126652

RESUMO

Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's - and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...