Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
ACS Synth Biol ; 13(3): 714-720, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381624

RESUMO

Promoters are crucial elements for engineering microbial production strains used in bioprocesses. For the increasingly popular chassis Komagataella phaffii (formerly Pichia pastoris), a limited number of well-characterized promoters constrain the data-driven engineering of production strains. Here, we present an in silico approach for condition-independent de novo identification of strong native promoters. The method relies on tRNA-codon coadaptation of coding sequences in the K. phaffii genome and is based on two complementary scores: the number of effective codons and the tRNA adaptation index. Genes with high codon bias are expected to be translated efficiently and, thus, also be under control of strong promoters. Using this approach, we identified promising strong promoter candidates and experimentally assessed their activity using fluorescent reporter assays characterizing 50 promoters spanning a 76-fold difference in expression levels in a glucose medium. Overall, we report several promoters that should be added to the molecular toolbox for engineering of K. phaffii and present an approach for identifying promoters in microbial genomes.


Assuntos
Pichia , Saccharomycetales , Pichia/genética , Uso do Códon , Saccharomycetales/genética , Regiões Promotoras Genéticas/genética
2.
Mol Syst Biol ; 19(8): e11493, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485750

RESUMO

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.


Assuntos
Herança Multifatorial , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fenótipo
3.
Front Microbiol ; 14: 1187228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389345

RESUMO

Genetically encoded fluorescent biosensors have emerged as a powerful tool to support phenotypic screenings of microbes. Optical analyses of fluorescent sensor signals from colonies grown on solid media can be challenging as imaging devices need to be equipped with appropriate filters matching the properties of fluorescent biosensors. Toward versatile fluorescence analyses of different types of biosensor signals derived from arrayed colonies, we investigate here the use of monochromator equipped microplate readers as an alternative to imaging approaches. Indeed, for analyses of the LacI-controlled expression of the reporter mCherry in Corynebacterium glutamicum, or promoter activity using GFP as reporter in Saccharomyces cerevisiae, an improved sensitivity and dynamic range was observed for a microplate reader-based analyses compared to their analyses via imaging. The microplate reader allowed us to capture signals of ratiometric fluorescent reporter proteins (FRPs) with a high sensitivity and thereby to further improve the analysis of internal pH via the pH-sensitive FRP mCherryEA in Escherichia coli colonies. Applicability of this novel technique was further demonstrated by assessing redox states in C. glutamicum colonies using the FRP Mrx1-roGFP2. By the use of a microplate reader, oxidative redox shifts were measured in a mutant strain lacking the non-enzymatic antioxidant mycothiol (MSH), indicating its major role for maintaining a reduced redox state also in colonies on agar plates. Taken together, analyses of biosensor signals from microbial colonies using a microplate reader allows comprehensive phenotypic screenings and thus facilitates further development of new strains for metabolic engineering and systems biology.

4.
Epigenomics ; 14(21): 1305-1324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36420698

RESUMO

Aim: To perform a comparative epigenomic analysis of DNA methylation in spermatozoa from humans, mice, rats and mini-pigs. Materials & methods: Genome-wide DNA methylation analysis was used to compare the methylation profiles of orthologous CpG sites. Transcription profiles of early embryo development were analyzed to provide insight into the association between sperm methylation and gene expression programming. Results: We identified DNA methylation variation near genes related to the central nervous system and signal transduction. Gene expression dynamics at different time points of preimplantation stages were modestly associated with spermatozoal DNA methylation at the nearest promoters. Conclusion: Conserved genomic regions subject to epigenetic variation across different species were associated with specific organ functions, suggesting their potential contribution to organ speciation and long-term adaptation to the environment.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Masculino , Animais , Camundongos , Ratos , Suínos , Epigenômica , Porco Miniatura/genética , Sêmen , Espermatozoides/metabolismo , Ilhas de CpG
5.
PLoS Comput Biol ; 18(6): e1009414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731801

RESUMO

Gene expression is controlled by pathways of regulatory factors often involving the activity of protein kinases on transcription factor proteins. Despite this well established mechanism, the number of well described pathways that include the regulatory role of protein kinases on transcription factors is surprisingly scarce in eukaryotes. To address this, PhosTF was developed to infer functional regulatory interactions and pathways in both simulated and real biological networks, based on linear cyclic causal models with latent variables. GeneNetWeaverPhos, an extension of GeneNetWeaver, was developed to allow the simulation of perturbations in known networks that included the activity of protein kinases and phosphatases on gene regulation. Over 2000 genome-wide gene expression profiles, where the loss or gain of regulatory genes could be observed to perturb gene regulation, were then used to infer the existence of regulatory interactions, and their mode of regulation in the budding yeast Saccharomyces cerevisiae. Despite the additional complexity, our inference performed comparably to the best methods that inferred transcription factor regulation assessed in the DREAM4 challenge on similar simulated networks. Inference on integrated genome-scale data sets for yeast identified ∼ 8800 protein kinase/phosphatase-transcription factor interactions and ∼ 6500 interactions among protein kinases and/or phosphatases. Both types of regulatory predictions captured statistically significant numbers of known interactions of their type. Surprisingly, kinases and phosphatases regulated transcription factors by a negative mode or regulation (deactivation) in over 70% of the predictions.


Assuntos
Monoéster Fosfórico Hidrolases , Proteínas Quinases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Gigascience ; 112022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365832

RESUMO

Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.


Assuntos
Genômica , Venenos de Serpentes , Animais , Genoma , Répteis/genética , Venenos de Serpentes/genética , Serpentes/genética
7.
Appl Environ Microbiol ; 88(7): e0230721, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35297727

RESUMO

Cells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have shown previously how a recombinant Saccharomyces cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level. Here, we investigated this adaptation at the single-cell level by application of fluorescence-activated cell sorting (FACS) and showed that the following three apparent phenotypes underlie the adaptive response observed at the bulk level: (i) cells that drastically reduced insulin production (23%), (ii) cells with reduced enzymatic capacity in central carbon metabolism (46%), and (iii) cells that exhibited pseudohyphal growth (31%). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production, and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness toward the glucose-limited conditions. The results highlight the importance of considering population heterogeneity when studying adaptation and evolution. IMPORTANCE The yeast Saccharomyces cerevisiae is an attractive microbial host for industrial production and is used widely for manufacturing, e.g., pharmaceuticals. Chemostat cultivation mode is an efficient cultivation strategy for industrial production processes as it ensures a constant, well-controlled cultivation environment. Nevertheless, both the production of a heterologous product and the constant cultivation environment in the chemostat impose a selective pressure on the production organism, which may result in adaptation and loss of productivity. The exact mechanisms behind the observed adaptation and loss of performance are often unidentified. We used a recombinant S. cerevisiae strain producing heterologous insulin and investigated the adaptation occurring during chemostat growth at the single-cell level. We showed that three apparent phenotypes underlie the adaptive response observed at the bulk level in the chemostat. These findings highlight the importance of considering population heterogeneity when studying adaptation in industrial bioprocesses.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Carbono/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 50(5): 2452-2463, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188540

RESUMO

Accelerated evolution of any portion of the genome is of significant interest, potentially signaling positive selection of phenotypic traits and adaptation. Accelerated evolution remains understudied for structured RNAs, despite the fact that an RNA's structure is often key to its function. RNA structures are typically characterized by compensatory (structure-preserving) basepair changes that are unexpected given the underlying sequence variation, i.e., they have evolved through negative selection on structure. We address the question of how fast the primary sequence of an RNA can change through evolution while conserving its structure. Specifically, we consider predicted and known structures in vertebrate genomes. After careful control of false discovery rates, we obtain 13 de novo structures (and three known Rfam structures) that we predict to have rapidly evolving sequences-defined as structures where the primary sequences of human and mouse have diverged at least twice as fast (1.5 times for Rfam) as nearby neutrally evolving sequences. Two of the three known structures function in translation inhibition related to infection and immune response. We conclude that rapid sequence divergence does not preclude RNA structure conservation in vertebrates, although these events are relatively rare.


Assuntos
Genoma , RNA , Animais , Evolução Molecular , Camundongos , Filogenia , RNA/química , RNA/genética , Vertebrados/genética
9.
Front Fungal Biol ; 3: 827704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746199

RESUMO

Production of heterologous proteins, especially biopharmaceuticals and industrial enzymes, in living cell factories consumes cellular resources. Such resources are reallocated from normal cellular processes toward production of the heterologous protein that is often of no benefit to the host cell. This competition for resources is a burden to host cells, has a negative impact on cell fitness, and may consequently trigger stress responses. Importantly, this often causes a reduction in final protein titers. Engineering strategies to generate more burden resilient production strains offer sustainable opportunities to increase production and profitability for this growing billion-dollar global industry. We review recently reported impacts of burden derived from resource competition in two commonly used protein-producing yeast cell factories: Saccharomyces cerevisiae and Komagataella phaffii (syn. Pichia pastoris). We dissect possible sources of burden in these organisms, from aspects related to genetic engineering to protein translation and export of soluble protein. We also summarize advances as well as challenges for cell factory design to mitigate burden and increase overall heterologous protein production from metabolic engineering, systems biology, and synthetic biology perspectives. Lastly, future profiling and engineering strategies are highlighted that may lead to constructing robust burden-resistant cell factories. This includes incorporation of systems-level data into mathematical models for rational design and engineering dynamical regulation circuits in production strains.

10.
Front Immunol ; 12: 629391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122403

RESUMO

Little is known about the involvement of type 2 immune response-promoting intestinal tuft cells in metabolic regulation. We here examined the temporal changes in small intestinal tuft cell number and activity in response to high-fat diet-induced obesity in mice and investigated the relation to whole-body energy metabolism and the immune phenotype of the small intestine and epididymal white adipose tissue. Intake of high fat diet resulted in a reduction in overall numbers of small intestinal epithelial and tuft cells and reduced expression of the intestinal type 2 tuft cell markers Il25 and Tslp. Amongst >1,700 diet-regulated transcripts in tuft cells, we observed an early association between body mass expansion and increased expression of the gene encoding the serine protease inhibitor neuroserpin. By contrast, tuft cell expression of genes encoding gamma aminobutyric acid (GABA)-receptors was coupled to Tslp and Il25 and reduced body mass gain. Combined, our results point to a possible role for small intestinal tuft cells in energy metabolism via coupled regulation of tuft cell type 2 markers and GABA signaling receptors, while being independent of type 2 immune cell involvement. These results pave the way for further studies into interventions that elicit anti-obesogenic circuits via small intestinal tuft cells.


Assuntos
Metabolismo Energético , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Interleucinas/genética , Interleucinas/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/imunologia , Fenótipo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Serpinas/genética , Serpinas/metabolismo , Transdução de Sinais , Fatores de Tempo , Aumento de Peso , Linfopoietina do Estroma do Timo , Neuroserpina
11.
PLoS One ; 16(6): e0252263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34097703

RESUMO

Reproducibility is a key challenge of synthetic biology, but the foundation of reproducibility is only as solid as the reference materials it is built upon. Here we focus on the reproducibility of fluorescence measurements from bacteria transformed with engineered genetic constructs. This comparative analysis comprises three large interlaboratory studies using flow cytometry and plate readers, identical genetic constructs, and compatible unit calibration protocols. Across all three studies, we find similarly high precision in the calibrants used for plate readers. We also find that fluorescence measurements agree closely across the flow cytometry results and two years of plate reader results, with an average standard deviation of 1.52-fold, while the third year of plate reader results are consistently shifted by more than an order of magnitude, with an average shift of 28.9-fold. Analyzing possible sources of error indicates this shift is due to incorrect preparation of the fluorescein calibrant. These findings suggest that measuring fluorescence from engineered constructs is highly reproducible, but also that there is a critical need for access to quality controlled fluorescent calibrants for plate readers.


Assuntos
Bactérias/genética , Engenharia Genética/métodos , Calibragem , Citometria de Fluxo/métodos , Fluorescência , Reprodutibilidade dos Testes , Biologia Sintética/métodos
12.
Clin Exp Allergy ; 51(7): 892-901, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33987892

RESUMO

BACKGROUND: Several childhood asthma risk loci that relate to immune function have been identified by genome-wide association studies (GWAS), but the underlying mechanisms remain unknown. OBJECTIVE: Here, we examined whether perturbed innate immune responses mediate the association between known genetic risk variants and development of childhood asthma. METHODS: Peripheral blood mononuclear cells from 336 six-month-old infants from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000 ) cohort were stimulated in vitro with six different innate ligands (LPS, CpG, poly(I:C), R848, HDMAPP and aluminium hydroxide together with low levels of LPS) followed by quantification of 18 released cytokines and chemokines 40 h after the stimulations. The innate immune response profiles were decomposed by principal component (PC) analysis, and PC1-5 were used in mediation analyses of the effect of 25 known genetic risk variants on childhood asthma until age 7. RESULTS: The effects of two variants from the 17q21 locus (rs7216389, rs2305480) on asthma and exacerbation risk were significantly mediated by immune parameters induced in response to ligands mimicking intracellular colonization; bacterial DNA (CpG) and double-stranded viral RNA (poly(I:C)). The Th17 and innate lymphoid cell type 3-amplifying cytokine IL-23 was the most prominent cytokine involved. CONCLUSION: The 17q21 effect on childhood asthma and exacerbations was partly mediated by deregulation of IL-23 in response to intracellular microbial ligands, which may suggest ineffective clearance of intracellular pathogens in the lungs.


Assuntos
Asma/imunologia , Cromossomos Humanos Par 17/imunologia , Imunidade Inata/imunologia , Interleucina-23/imunologia , Células Th17/imunologia , Asma/genética , Cromossomos Humanos Par 17/genética , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imunidade Inata/genética , Lactente , Masculino , Polimorfismo de Nucleotídeo Único
13.
J Biotechnol ; 327: 1-8, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33373629

RESUMO

Continuous improvements of cell culture media are required in order to ensure high yield and product quality. However, some components can be instable and lead to detrimental effects on bioprocess performances. l-cysteine is an essential amino acid commonly used in cell culture media. Despite its beneficial effect on recombinant protein production, in some cases, this component can be responsible for product microheterogeneity. In this context, alternative components have to be found in order to reduce product variants while maintaining high productivity. In this study, we have assessed the performance of different cysteine and cystine analogs : N-acetyl-cysteine, s-sulfocysteine, N,N'-diacetyl-l-cystine and the N,N'-diacetyl-l-cystine dimethylester (DACDM). Replacement of cysteine by cystine analogs, and especially DACDM, has shown positive impact on charge variants level and recombinant protein coloration level. Moreover, this molecule contributed to the increase of the intracellular glutathione pool, which suggests a close relationship with the oxidative stress regulation.


Assuntos
Cisteína , Cistina , Estresse Oxidativo , Aminoácidos , Técnicas de Cultura de Células , Meios de Cultura , Cisteína/metabolismo , Cistina/metabolismo , Glutationa/metabolismo
14.
Commun Biol ; 3(1): 640, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110148

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Commun Biol ; 3(1): 512, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943734

RESUMO

Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals  <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.


Assuntos
Carga Bacteriana/genética , Escherichia coli/crescimento & desenvolvimento , Citometria de Fluxo , Calibragem , Contagem de Células/métodos , Escherichia coli/genética , Fluorescência , Regulação Bacteriana da Expressão Gênica/genética
16.
Biotechnol Biofuels ; 13: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774456

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are often studied in simple models involving activity measurements of a single LPMO or a blend thereof with hydrolytic enzymes towards an insoluble substrate. However, the contribution of LPMOs to polysaccharide breakdown in complex cocktails of hydrolytic and oxidative enzymes, similar to fungal secretomes, remains elusive. Typically, two starch-specific AA13 LPMOs are encoded by mainly Ascomycota genomes. Here, we investigate the impact of LPMO loss on the growth and degradation of starches of varying resistance to amylolytic hydrolases by Aspergillus nidulans. RESULTS: Deletion of the genes encoding AnAA13A that possesses a CBM20 starch-binding module, AnAA13B (lacking a CBM20) or both AA13 genes resulted in reduced growth on solid media with resistant, but not soluble processed potato starch. Larger size and amount of residual starch granules were observed for the AA13-deficient strains as compared to the reference and the impairment of starch degradation was more severe for the strain lacking AnAA13A based on a microscopic analysis. After 5 days of growth on raw potato starch in liquid media, the mount of residual starch was about fivefold higher for the AA13 gene deletion strains compared to the reference, which underscores the importance of LPMOs for degradation of especially resistant starches. Proteomic analyses revealed substantial changes in the secretomes of the double AA13 gene deletion, followed by the AnAA13A-deficient strain, whereas only a single protein was significantly different in the proteome of the AnAA13B-deficient strain as compared to the reference. CONCLUSIONS: This study shows that the loss of AA13, especially the starch-binding AnAA13A, impairs degradation of resistant potato starch, but has limited impact on less-resistant wheat starch and no impact on processed solubilized starch. The effects of LPMO loss are more pronounced at the later stages of fungal growth, likely due to the accumulation of the less-accessible regions of the substrate. The striking impairment in granular starch degradation due to the loss of a single LPMO from the secretome offers insight into the crucial role played by AA13 in the breakdown of resistant starch and presents a methodological framework to analyse the contribution of distinct LPMOs towards semi-crystalline polysaccharides under in vivo conditions.

17.
Biotechnol Bioeng ; 117(11): 3448-3458, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662871

RESUMO

Glutathione (GSH) plays a central role in the redox balance maintenance in mammalian cells. Previous studies of industrial Chinese hamster ovary cell lines have demonstrated a relationship between GSH metabolism and clone productivity. However, a thorough investigation is required to understand this relationship and potentially highlight new targets for cell engineering. In this study, we have modulated the GSH intracellular content of an industrial cell line under bioprocess conditions to further elucidate the role of the GSH synthesis pathway. Two strategies were used: the variation of cystine supply and the direct inhibition of the GSH synthesis using buthionine sulfoximine (BSO). Over time of the bioprocess, a correlation between intracellular GSH and product titer has been observed. Analysis of metabolites uptake/secretion rates and proteome comparison between BSO-treated cells and nontreated cells has highlighted a slowdown of the tricarboxylic acid cycle leading to a secretion of lactate and alanine in the extracellular environment. Moreover, an adaptation of the GSH-related proteome has been observed with an upregulation of the regulatory subunit of glutamate-cysteine ligase and a downregulation of a specific GSH transferase subgroup, the Mu family. Surprisingly, the main impact of BSO treatment was observed on a global downregulation of the cholesterol synthesis pathways. As cholesterol is required for protein secretion, it could be the missing piece of the puzzle to finally elucidate the link between GSH synthesis and productivity.


Assuntos
Butionina Sulfoximina/metabolismo , Colesterol/metabolismo , Glutationa/metabolismo , Proteoma/metabolismo , Animais , Células CHO/metabolismo , Cricetulus , Proteoma/análise , Proteômica
18.
Nat Commun ; 11(1): 2695, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483258

RESUMO

Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Elementos Facilitadores Genéticos , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidade/patologia , Ácido Palmítico/farmacologia , Fatores de Iniciação de Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/farmacologia
19.
Biotechnol Bioeng ; 117(7): 2074-2088, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277712

RESUMO

Chemostat cultivation mode imposes selective pressure on the cells, which may result in slow adaptation in the physiological state over time. We applied a two-compartment scale-down chemostat system imposing feast-famine conditions to characterize the long-term (100 s of hours) response of Saccharomyces cerevisiae to fluctuating glucose availability. A wild-type strain and a recombinant strain, expressing an insulin precursor, were cultured in the scale-down system, and analyzed at the physiological and proteomic level. Phenotypes of both strains were compared with those observed in a well-mixed chemostat. Our results show that S. cerevisiae subjected to long-term chemostat conditions undergoes a global reproducible shift in its cellular state and that this transition occurs faster and is larger in magnitude for the recombinant strain including a significant decrease in the expression of the insulin product. We find that the transition can be completely avoided in the presence of fluctuations in glucose availability as the strains subjected to feast-famine conditions under otherwise constant culture conditions exhibited constant levels of the measured proteome for over 250 hr. We hypothesize possible mechanisms responsible for the observed phenotypes and suggest experiments that could be used to test these mechanisms.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultura de Células/métodos , Microbiologia Industrial/métodos , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-31867115

RESUMO

BACKGROUND: Filamentous fungi are important producers of enzymes and bioactive secondary metabolites and are exploited for industrial purposes. Expression and characterization of biosynthetic pathways requires stable expression of multiple genes in the production host. Fungal promoters are indispensable for the accomplishment of this task, and libraries of promoters that show functionality across diverse fungal species facilitate synthetic biology approaches, pathway expression, and cell-factory construction. RESULTS: In this study, we characterized the intergenic region between the genes encoding histones H4.1 and H3, from five phylogenetically diverse species of Aspergillus, as bidirectional promoters (Ph4h3). By expression of the genes encoding fluorescent proteins mRFP1 and mCitrine, we show at the translational and transcriptional level that this region from diverse species is applicable as strong and constitutive bidirectional promoters in Aspergillus nidulans. Bioinformatic analysis showed that the divergent gene orientation of h4.1 and h3 appears maintained among fungi, and that the Ph4h3 display conserved DNA motifs among the investigated 85 Aspergilli. Two of the heterologous Ph4h3s were utilized for single-locus expression of four genes from the putative malformin producing pathway from Aspergillus brasiliensis in A. nidulans. Strikingly, heterologous expression of mlfA encoding the non-ribosomal peptide synthetase is sufficient for biosynthesis of malformins in A. nidulans, which indicates an iterative use of one adenylation domain in the enzyme. However, this resulted in highly stressed colonies, which was reverted to a healthy phenotype by co-expressing the residual four genes from the putative biosynthetic gene cluster. CONCLUSIONS: Our study has documented that Ph4h3 is a strong constitutive bidirectional promoter and a valuable new addition to the genetic toolbox of at least the genus Aspergillus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...