Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 32(11): 2795-2813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479966

RESUMO

BACKGROUND: Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS: We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS: The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS: Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.


Assuntos
Computação em Nuvem , Processamento de Imagem Assistida por Computador/métodos , Nefropatias/patologia , Glomérulos Renais/citologia , Podócitos/ultraestrutura , Animais , Automação , Contagem de Células , Núcleo Celular/ultraestrutura , Conjuntos de Dados como Assunto , Aprendizado Profundo , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Reação do Ácido Periódico de Schiff , Ratos , Especificidade da Espécie
2.
Artigo em Inglês | MEDLINE | ID: mdl-34366543

RESUMO

In diabetic kidney disease (DKD), podocyte depletion, and the subsequent migration of parietal epithelial cells (PECs) to the tuft, is a precursor to progressive glomerular damage, but the limitations of brightfield microscopy currently preclude direct pathological quantitation of these cells. Here we present an automated approach to podocyte and PEC detection developed using kidney sections from mouse model emulating DKD, stained first for Wilms' Tumor 1 (WT1) (podocyte and PEC marker) by immunofluorescence, then post-stained with periodic acid-Schiff (PAS). A generative adversarial network (GAN)-based pipeline was used to translate these PAS-stained sections into WT1-labeled IF images, enabling in silico label-free podocyte and PEC identification in brightfield images. Our method detected WT1-positive cells with high sensitivity/specificity (0.87/0.92). Additionally, our algorithm performed with a higher Cohen's kappa (0.85) than the average manual identification by three renal pathologists (0.78). We propose that this pipeline will enable accurate detection of WT1-positive cells in research applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32362706

RESUMO

The primary purpose of the kidney, specifically the glomerulus, is filtration. Filtration is accomplished through the glomerular filtration barrier, which consists of the fenestrated endothelium, glomerular basement membrane, and specialized epithelial cells called podocytes. In pathologic states, such as Diabetes Mellitus (DM) and diabetic kidney disease (DKD), variable glomerular conditions result in podocyte injury and depletion, followed by progressive glomerular injury and DKD progression. In this work we quantified glomerulus and podocyte structural changes in histopathology image data derived from a murine model of DM. Using a variety of image processing techniques, we studied changes in podocyte morphology and intra-glomerular distribution across healthy, mild DM, and DM glomeruli. Our feature analysis provided feature trends which we believe are reflective of DKD pathology; while glomerular area peaked in mild DM, average podocyte number and distance from the urinary pole continued to decrease and increase, respectively, throughout DM. Ultimately, this study aims to augment the set of quantifiable image biomarkers used for evaluation of DKD progression in digital pathology, as well as underscore the importance of engineering biologically-inspired image features.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32377029

RESUMO

In the age of modern medicine and artificial intelligence, image analysis and machine learning have revolutionized diagnostic pathology, facilitating the development of computer aided diagnostics (CADs) which circumvent prevalent diagnostic challenges. Although CADs will expedite and improve the precision of clinical workflow, their prognostic potential, when paired with clinical outcome data, remains indeterminate. In high impact renal diseases, such as diabetic nephropathy and lupus nephritis (LN), progression often occurs rapidly and without immediate detection, due to the subtlety of structural changes in transient disease states. In such states, exploration of quantifiable image biomarkers, such as Neutrophil Extracellular Traps (NETs), may reveal alternative progression measures which correlate with clinical data. NETs have been implicated in LN as immunogenic cellular structures, whose occurrence and dysregulation results in excessive tissue damage and lesion manifestation. We propose that renal biopsy NET distribution will function as a discriminate, predictive biomarker in LN, and will supplement existing classification schemes. We have developed a computational pipeline for segmenting NET-like structures in LN biopsies. NET-like structures segmented from our biopsies warrant further study as they appear pathologically distinct, and resemble non-lytic, vital NETs. Examination of corresponding H&E regions predominantly placed NET-like structures in glomeruli, including globally and segmentally sclerosed glomeruli, and tubule lumina. Our work continues to explore NET-like structures in LN biopsies by: 1.) revising detection and analytical methods based on evolving NETs definitions, and 2.) cataloguing NET morphology in order to implement supervised classification of NET-like structures in histopathology images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...