Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 562(7728): 552-556, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30297800

RESUMO

Topological insulators-materials that are insulating in the bulk but allow electrons to flow on their surface-are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3-5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin-orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16-18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light-matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system.

2.
Phys Rev Lett ; 119(2): 027401, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753330

RESUMO

The dipole coupling strength g between cavity photons and quantum well excitons determines the regime of light matter coupling in quantum well microcavities. In the strong coupling regime, a reversible energy transfer between exciton and cavity photon takes place, which leads to the formation of hybrid polaritonic resonances. If the coupling is further increased, a hybridization of different single exciton states emerges, which is referred to as the very strong coupling regime. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wave functions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy g/E_{B} approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity characterized by g/E_{B}≈0.64, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This yields a diamagnetic shift around 0 detuning that exceeds the shift of the lower polariton by 1 order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of 2. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode, which suggests more tightly bound electron-hole pairs than in the bare quantum well.

3.
Nano Lett ; 17(4): 2273-2279, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28296417

RESUMO

Electronic circuits composed of one or more elements with inherent memory, that is, memristors, memcapacitors, and meminductors, offer lower circuit complexity and enhanced functionality for certain computational tasks. Networks of these elements are proposed for novel computational paradigms that rely on information processing and storage on the same physical platform. We show a nanoscaled memdevice able to act as an electronic analogue of tipping buckets that allows reducing the dimensionality and complexity of a sensing problem by transforming it into a counting problem. The device offers a well adjustable, tunable, and reliable periodic reset that is controlled by the amounts of transferred quantum dot charges per gate voltage sweep. When subjected to periodic voltage sweeps, the quantum dot (bucket) may require up to several sweeps before a rapid full discharge occurs thus displaying period doubling, period tripling, and so on between self-governing reset operations.

4.
Nanotechnology ; 27(21): 215201, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27079182

RESUMO

In this paper we demonstrate two realizations of a half adder based on a voltage-rectifying mechanism involving two Coulomb-coupled quantum dots. First, we examine the ranges of operation of the half adder's individual elements, the AND and XOR gates, for a single rectifying device. It allows a switching between the two gates by a control voltage and thus enables a clocked half adder operation. The logic gates are shown to be reliably operative in a broad noise amplitude range with negligible error probabilities. Subsequently, we study the implementation of the half adder in a combined double-device consisting of two individually tunable rectifiers. We show that this double device allows a simultaneous operation of both relevant gates at once. The presented devices draw their power solely from electronic fluctuations and are therefore an advancement in the field of energy efficient and autonomous electronics.

5.
Phys Rev Lett ; 114(14): 146805, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910151

RESUMO

We study the rectification of voltage fluctuations in a system consisting of two Coulomb-coupled quantum dots. The first quantum dot is connected to a reservoir where voltage fluctuations are supplied and the second one is attached to two separate leads via asymmetric and energy-dependent transport barriers. We observe a rectified output current through the second quantum dot depending quadratically on the noise amplitude supplied to the other Coulomb-coupled quantum dot. The current magnitude and direction can be switched by external gates, and maximum output currents are found in the nA region. The rectification delivers output powers in the pW region. Future devices derived from our sample may be applied for energy harvesting on the nanoscale beneficial for autonomous and energy-efficient electronic applications.

6.
Phys Rev Lett ; 112(9): 093902, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655252

RESUMO

We observe a strong variation of the Zeeman splitting of exciton polaritons in microcavities when switching between the linear regime, the polariton lasing, and photon lasing regimes. In the polariton lasing regime the sign of Zeeman splitting changes compared to the linear regime, while in the photon lasing regime the splitting vanishes. We additionally observe an increase of the diamagnetic shift in the polariton lasing regime. These effects are explained in terms of the nonequilibrium "spin Meissner effect."


Assuntos
Campos Eletromagnéticos , Modelos Teóricos , Óptica e Fotônica/métodos , Fótons , Teoria Quântica , Semicondutores
7.
Phys Rev Lett ; 108(5): 057402, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400961

RESUMO

We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 µeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.

8.
Nanotechnology ; 23(1): 015605, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22156168

RESUMO

We demonstrate a method to controllably reduce the density of self-assembled InP quantum dots (QDs) by cyclic deposition with growth interruptions. Varying the number of cycles enabled a reduction of the QD density from 7.4 × 10(10) cm(-2) to 1.8 × 10(9) cm(-2) for the same total amount of deposited InP. Simultaneously, a systematic increase of the QD size could be observed. Emission characteristics of different-sized InP QDs were analyzed. Excitation power dependent and time-resolved measurements confirm a transition from type I to type II band alignment for large InP quantum dots. Photon autocorrelation measurements of type I QDs performed under pulsed excitation reveal pronounced antibunching (g((2))(τ = 0) = 0.06 ± 0.03) as expected for a single-photon emitter. The described growth routine has great promise for the exploitation of InP QDs as quantum emitters.

9.
Nanotechnology ; 22(41): 415604, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21918297

RESUMO

We report on the growth of AlGaInP quantum dots (QDs) with Al contents between 0% and 10% on GaP substrate by gas-source molecular beam epitaxy and the investigation of their morphological and low temperature photoluminescence properties. These high areal density QDs show short wavelength emission between 575 and 612 nm depending on their composition. The authors interpret the QD emission as originating from indirect type-II transitions. This interpretation is supported by a single-band effective-mass model, which allows us to describe the role of differing barrier composition in the QD emission. Time-resolved photoluminescence measurements are performed and discussed with respect to the calculations.

10.
Nanotechnology ; 21(45): 455603, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20947950

RESUMO

This paper presents a systematic investigation of strain compensation schemes for InAs/AlSb superlattices (SLs) on GaSb substrates. Short growth interruptions (soak times) under varying arsenic and/or antimony beam equivalent pressures in InAs/AlSb SLs with exemplary dimensions of about ((2.4/2.4) ± 0.2) nm were investigated to achieve strain compensation. When using uncracked As(4), strain compensation was found to be unaccomplishable unless sub-monolayer AlAs spikes were inserted at the InAs → AlSb interface. In contrast, the supply of cracked As(2) dimers leads directly to the formation of strain compensating AlAs-like interfaces. This mechanism allows various growth sequences for strain compensated superlattices, including soak-time-free and Sb-soak-only SL growth. Each of the two latter approaches yields layers with excellent crystal quality and minimal intermixing at the heterointerfaces as verified by high resolution x-ray diffraction analysis and transmission electron microscopy.

11.
Nanotechnology ; 21(10): 105711, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20157234

RESUMO

We have employed time-resolved photoluminescence (PL) spectroscopy to study the impact of HfO(2) surface capping by atomic layer deposition (ALD) on the optical properties of InP nanowires (NWs). The deposition of high-kappa dielectrics acting as a gate oxide is of particular interest in view of possible applications of semiconductor NWs in future wrap-gated field effect transistors (FETs). A high number of charged states at the NW-dielectrics interface can strongly degrade the performance of the FET which explains the strong interest in high quality deposition of high-kappa dielectrics. In the present work we show that time-resolved spectroscopy is a valuable and direct tool to monitor the surface quality of HfO(2)-capped InP NWs. In particular, we have studied the impact of ALD process parameters as well as surface treatment prior to the oxide capping on the NW-dielectrics interface quality. The best results in terms of the surface recombination velocity (S(0) = 9.5 x 10(3) cm s(-1)) were obtained for InP/GaP core/shell NWs in combination with a low temperature (100 degrees C) ALD process. While the present report focuses on the InP material system, our method of addressing the surface treatment for semiconductors with high-kappa dielectrics will also be applicable to nanoelectronic devices based on other III/V material systems such as InAs.

12.
Phys Rev Lett ; 105(25): 256401, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231604

RESUMO

The effect of a magnetic field on a spinor exciton-polariton condensate has been investigated. A quenching of a polariton Zeeman splitting and an elliptical polarization of the condensate have been observed at low magnetic fields B<2 T. The effects are attributed to a competition between the magnetic field induced circular polarization buildup and the spin-anisotropic polariton-polariton interaction which favors a linear polarization. The sign of the circular polarization of the condensate emission at B<3 T is negative, suggesting that a dynamic condensation in the excited spin state rather than the ground spin state takes place in this magnetic field range. From about 2T on, the Zeeman splitting opens and from then on the slope of the circular polarization degree changes its sign. For magnetic fields larger than the 3 T, the upper spin state occupation is energetically suppressed and circularly polarized condensation takes place in the ground state.

13.
Phys Rev Lett ; 103(12): 127401, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19792457

RESUMO

We have studied a strongly coupled quantum dot-micropillar cavity system subject to an external magnetic field. The large diamagnetic response of elongated In_{0.3}Ga_{0.7}As quantum dots is exploited to demonstrate magneto-optical resonance tuning in the strong coupling regime. Furthermore, the magnetic field provides an additional degree of freedom to in situ manipulate the coupling constant. A transition from strong coupling towards the critical coupling regime is attributed to a reduction of the quantum dot oscillator strength when the magnetic confinement becomes significant with regards to the exciton confinement above 3 T.

14.
Nanotechnology ; 20(43): 434012, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19801767

RESUMO

Results obtained by an advanced growth of site-controlled quantum dots (SCQDs) on pre-patterned nanoholes and their integration into both photonic resonators and nanoelectronic memories are summarized. A specific technique has been pursued to improve the optical quality of single SCQDs. Quantum dot (QD) layers have been vertically stacked but spectrally detuned for single SCQD studies. Thereby, the average emission linewidth of single QDs could be reduced from 2.3 meV for SCQDs in a first QD layer close to the etched nanoholes down to 600 microeV in the third InAs QD layer. Accurate SCQD nucleation on large QD distances is maintained by vertical strain induced QD coupling throughout the QD stacks. Record narrow linewidths of individual SCQDs down to approximately 110 microeV have been obtained. Experiments performed on coupled photonic SCQD-resonator devices show an enhancement of spontaneous emission. SCQDs have also been integrated deterministically in high electron mobility heterostructures and flash memory operation at room temperature has been observed.

15.
Opt Express ; 17(15): 12821-8, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19654688

RESUMO

A strongly coupled quantum dot-micropillar cavity system is studied under variation of the excitation power. The characteristic double peak spectral shape of the emission with a vacuum Rabi splitting of 85 microeV at low excitation transforms gradually into a single broad emission peak when the excitation power is increased. Modelling the experimental data by a recently published formalism [Laussy et al., Phys. Rev. Lett. 101, 083601 (2008)] yields a transition from strong coupling towards weak coupling which is mainly attributed to an excitation power driven decrease of the exciton-photon coupling constant.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica , Pontos Quânticos , Modelos Estatísticos , Oscilometria/métodos , Fótons , Física/métodos , Temperatura
16.
Nano Lett ; 5(7): 1423-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16178251

RESUMO

By using arrays of nanowires with intentionally broken symmetry, we were able to detect microwaves up to 110 GHz at room temperature. This is, to the best of our knowledge, the highest speed that has been demonstrated in different types of novel electronic nanostructures to date. Our experiments showed a rather stable detection sensitivity over a broad frequency range from 100 MHz to 110 GHz. The novel working principle enabled the nanowires to detect microwaves efficiently without a dc bias. In principle, the need for only one high-resolution lithography step and the planar architecture allow an arbitrary number of nanowires to be made by folding a linear array as many times as required over a large area, for example, a whole wafer. Our experiment on 18 parallel nanowires showed a sensitivity of approximately 75 mV dc output/mW of nominal input power of the 110 GHz signal, even though only about 0.4% of the rf power was effectively applied to the structure because of an impedance mismatch. Because this array of nanowires operates simultaneously, low detection noise was achieved, allowing us to detect -25 dBm 110 GHz microwaves at zero bias with a standard setup.


Assuntos
Instalação Elétrica , Fenômenos Eletromagnéticos/instrumentação , Micro-Ondas , Nanotubos/química , Nanotubos/efeitos da radiação , Radiometria/instrumentação , Impedância Elétrica , Fenômenos Eletromagnéticos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Radiometria/métodos
17.
Phys Rev Lett ; 89(22): 226804, 2002 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-12485093

RESUMO

We have fabricated electron Y-branch switches (YBS) on modulation doped GaAs/AlGaAs heterostructures. The Y branch consists of a one-dimensional source, which is split along the branching section into two one-dimensional drains. In addition to source drain voltages, external electric fields can be applied via gates along the branches. In the nonlinear transport regime sweeps of the side-gate voltages lead to a voltage difference between the drain reservoirs with gain. This switching gain increases superlinearly with the bias voltage applied between the source and the drains of the YBS. We explain the bias voltage enhanced switching by a capacitive coupling of the branches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...