Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747999

RESUMO

Quantum dynamics simulations are becoming a standard tool for simulating photo-excited molecular systems involving a manifold of coupled states, known as non-adiabatic dynamics. While these simulations have had many successes in explaining experiments and giving details of non-adiabatic transitions, the question remains as to their predictive power. In this work, we present a set of quantum dynamics simulations on cyclobutanone using both grid-based multi-configuration time-dependent Hartree and direct dynamics variational multi-configuration Gaussian methods. The former used a parameterized vibronic coupling model Hamiltonian, and the latter generated the potential energy surfaces on the fly. The results give a picture of the non-adiabatic behavior of this molecule and were used to calculate the signal from a gas-phase ultrafast electron diffraction (GUED) experiment. Corresponding experimental results will be obtained and presented at a later stage for comparison to test the predictive power of the methods. The results show that over the first 500 fs after photo-excitation to the S2 state, cyclobutanone relaxes quickly to the S1 state, but only a small population relaxes further to the S0 state. No significant transfer of population to the triplet manifold is found. It is predicted that the GUED experiments over this time scale will see signals related mostly to the C-O stretch motion and elongation of the molecular ring along the C-C-O axis.

2.
J Am Chem Soc ; 146(15): 10407-10417, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572973

RESUMO

Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.

3.
J Phys Chem Lett ; 15(8): 2216-2221, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38373198

RESUMO

Despite the fact that NO2 is considered to be the main photoproduct of nitrobenzene photochemistry, no mechanism has ever been proposed to rationalize its formation. NO photorelease is instead a more studied process, probably due to its application in the drug delivery sector and the study of roaming mechanisms. In this contribution, a photoinduced mechanism accounting for the formation of NO2 in nitrobenzene is theorized based on CASPT2, CASSCF, and DFT electronic structure calculations and CASSCF classical dynamics. A triplet nπ* state is shown to evolve toward C-NO2 dissociation, being, in fact, the only low-lying excited state favoring such a deformation. Along the triplet dissociation path, the possibility to decay to the singlet ground state results in the frustration of the dissociation and in the recombination of the fragments, either back to the nitro or the nitrite isomer. The thermal decomposition of the latter to NO constitutes globally a roaming mechanism of NO formation.

4.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353309

RESUMO

Photoexcitation of green fluorescent protein (GFP) triggers long-range proton transfer along a "wire" of neighboring protein residues, which, in turn, activates its characteristic green fluorescence. The GFP proton wire is one of the simplest, most well-characterized models of biological proton transfer but remains challenging to simulate due to the sensitivity of its energetics to the surrounding protein conformation and the possibility of non-classical behavior associated with the movement of lightweight protons. Using a direct dynamics variational multiconfigurational Gaussian wavepacket method to provide a fully quantum description of both electrons and nuclei, we explore the mechanism of excited state proton transfer in a high-dimensional model of the GFP chromophore cluster over the first two picoseconds following excitation. During our simulation, we observe the sequential starts of two of the three proton transfers along the wire, confirming the predictions of previous studies that the overall process starts from the end of the wire furthest from the fluorescent chromophore and proceeds in a concerted but asynchronous manner. Furthermore, by comparing the full quantum dynamics to a set of classical trajectories, we provide unambiguous evidence that tunneling plays a critical role in facilitating the leading proton transfer.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química , Fluorescência , Conformação Proteica , Simulação por Computador
5.
Phys Chem Chem Phys ; 26(4): 3451-3461, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205824

RESUMO

The phenol molecule is a prototype for non-adiabatic dynamics and the excited-state photochemistry of biomolecules. In this article, we report a joint theoretical and experimental investigation on the resonance enhanced multiphoton ionisation photoelectron (REMPI) spectra of the two lowest ionisation bands of phenol. The focus is on the theoretical interpretation of the measured spectra using quantum dynamics simulations. These were performed by numerically solving the time-dependent Schrödinger equation using the multi-layer variant of the multiconfiguration time-dependent Hartree algorithm together with a vibronic coupling Hamiltonian model. The ionising laser pulse is modelled explicitly within the ionisation continuum model to simulate experimental femtosecond 1+1 REMPI photoelectron spectra. These measured spectra are sensitive to very short lived electronically excited states, providing a rigorous benchmark for our theoretical methods. The match between experiment and theory allows for an interpretation of the features of the spectra at different wavelengths and shows that there are features due to both 'direct' and 'indirect' ionisation, resulting from non-resonant and resonant excitation by the pump pulse.

6.
Phys Chem Chem Phys ; 26(3): 1829-1844, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170796

RESUMO

On-the-fly non-adiabatic dynamics methods are becoming more important as tools to characterise the time evolution of a system after absorbing light. These methods, which calculate quantities such as state energies, gradients and interstate couplings at every time step, circumvent the requirement for pre-computed potential energy surfaces. There are a number of different algorithms used, the most common being Tully Surface Hopping (TSH), but all are approximate solutions to the time-dependent Schrödinger equation and benchmarking is required to understand their accuracy and performance. For this, a common set of systems and observables are required to compare them. In this work, we validate the on-the-fly direct dynamics variational multi-configuration Gaussian (DD-vMCG) method using three molecular systems recently suggested by Ibele and Curchod as molecular versions of the Tully model systems used to test one-dimensional non-adiabatic behaviour [Ibele et al., Phys. Chem. Chem. Phys. 2020, 22, 15183-15196]. Parametrised linear vibronic potential energy surfaces for each of the systems were also tested and compared to on-the-fly results. The molecules, which we term the Ibele-Curchod models, are ethene, DMABN and fulvene and the authors used them to test and compare several versions of the Ab Initio Multiple Spawning (AIMS) method alongside TSH. The three systems present different deactivation pathways after excitation to their ππ* bright states. When comparing DD-vMCG to AIMS and TSH, we obtain crucial differences in some cases, for which an explanation is provided by the classical nature and the chosen initial conditions of the TSH simulations.

7.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982483

RESUMO

Solving the Liouville-von-Neumann equation using a density operator provides a more complete picture of dynamical quantum phenomena than by using a wavepacket and solving the Schrödinger equation. As density operators are not restricted to the description of pure states, they can treat both thermalized and open systems. In practice, however, they are rarely used to study molecular systems as the computational resources required are even more prohibitive than those needed for wavepacket dynamics. In this paper, we demonstrate the potential utility of a scheme based on the powerful multi-layer multi-configurational time-dependent Hartree algorithm for propagating multi-dimensional density operators. Studies of two systems using this method are presented at a range of temperatures and including up to 13 degrees of freedom. The first case is single proton transfer in salicylaldimine, while the second is double proton transfer in porphycene. A comparison is also made with the approach of using stochastic wavepackets.

8.
J Phys Chem Lett ; 14(26): 6127-6134, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364275

RESUMO

We present a theoretical study of intersystem crossing (ISC) in acrolein and ketene with the Ehrenfest method that can describe a superposition of singlet and triplet states. Our simulations illustrate a new mechanistic effect of ISC, namely, that a superposition of singlets and triplets yields nonadiabatic dynamics characteristic of that superposition rather than the constituent state potential energy surfaces. This effect is particularly significant in ketene, where mixing of singlet and triplet states along the approach to a singlet/singlet conical intersection occurs, with the spin-orbit coupling (SOC) remaining small throughout. In both cases, the effects require many recrossings of the singlet/triplet state crossing seam, consistent with the textbook treatment of ISC.

9.
J Chem Phys ; 158(13): 134303, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031131

RESUMO

We report a joint experimental and computational study of the photoelectron spectroscopy and the dissociative photoionization of fulminic acid, HCNO. The molecule is of interest to astrochemistry and astrobiology as a potential precursor of prebiotic molecules. Synchrotron radiation was used as the photon source. Dispersive photoelectron spectra were recorded from 10 to 22 eV, covering four band systems in the HCNO cation, and an ionization energy of 10.83 eV was determined. Transitions into the Renner-Teller distorted X+2Π state of the cation were simulated using wavepacket dynamics based on a vibronic coupling Hamiltonian. Very good agreement between experiment and theory is obtained. While the first excited state of the cation shows only a broad and unstructured spectrum, the next two higher states exhibit a well-resolved vibrational progression. Transitions into the excited electronic states of HCNO+ were not simulated due to the large number of electronic states that contribute to these transitions. Nevertheless, a qualitative assignment is given, based on the character of the orbitals involved in the transitions. The dissociative photoionization was investigated by photoelectron-photoion coincidence spectroscopy. The breakdown diagram shows evidence for isomerization from HCNO+ to HNCO+ on the cationic potential energy surface. Zero Kelvin appearance energies for the daughter ions HCO+ and NCO+ have been derived.

10.
J Chem Phys ; 157(20): 204301, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456224

RESUMO

Nitroaromatic compounds can photorelease nitric oxide after UV absorption. The efficiency of the photoreaction depends on the molecular structure, and two features have been pointed out as particularly important for the yield of the process: the presence of methyl groups at the ortho position with respect to the nitro group and the degree of conjugation of the molecule. In this paper, we provide a theoretical characterization at the CASPT2//CASSCF (complete active space second-order perturbation theory//complete active space self-consistent field) level of theory of the photorelease of NO for four molecules derived from nitrobenzene through the addition of ortho methyl groups and/or the elongation of the conjugation. Our previously described mechanism obtained for the photorelease of NO in nitrobenzene has been adopted as a model for the process. According to this model, the process proceeds through a reactive singlet-triplet crossing (STC) region that the system can reach from the triplet 3(πOπ*) minimum. The energy barrier that must be surmounted in order to populate the reactive STC can be associated with the efficiency of the photoreaction. Here, the obtained results display clear differences in the efficiency of the photoreaction in the studied systems and can be correlated with experimental results. Thus, the model proves its ability to highlight the differences in the photoreaction efficiency for the nitroaromatic compounds studied here.

11.
Phys Rev Lett ; 129(17): 173203, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332247

RESUMO

The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon.

12.
Chemistry ; 28(57): e202203016, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202627

RESUMO

Invited for the cover of this issue is the group of G. A. Worth, F. Santoro and R. Improta at UCL, ICOOM-CNR and IBB-CNR. The image depicts charge transfer from guanine to cytosine in solvent after the absorption of light. Read the full text of the article at 10.1002/chem.202201731.


Assuntos
Citosina , Guanina , Clorofórmio , Solventes
13.
Chemistry ; 28(57): e202201731, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35950519

RESUMO

We study the ultrafast photoactivated dynamics of the hydrogen bonded dimer Guanine-Cytosine in chloroform solution, focusing on the population of the Guanine→Cytosine charge transfer state (GC-CT), an important elementary process for the photophysics and photochemistry of nucleic acids. We integrate a quantum dynamics propagation scheme, based on a linear vibronic model parameterized through time dependent density functional theory calculations, with four different solvation models, either implicit or explicit. On average, after 50 fs, 30∼40 % of the bright excited state population has been transferred to GC-CT. This process is thus fast and effective, especially when transferring from the Guanine bright excited states, in line with the available experimental studies. Independent of the adopted solvation model, the population of GC-CT is however disfavoured in solution with respect to the gas phase. We show that dynamical solvation effects are responsible for this puzzling result and assess the different chemical-physical effects modulating the population of CT states on the ultrafast time-scale. We also propose some simple analyses to predict how solvent can affect the population transfer between bright and CT states, showing that the effect of the solute/solvent electrostatic interactions on the energy of the CT state can provide a rather reliable indication of its possible population.


Assuntos
Citosina , Ácidos Nucleicos , Clorofórmio , Guanina , Hidrogênio , Teoria Quântica , Solventes
14.
J Chem Phys ; 156(24): 244114, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778090

RESUMO

In this work, we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states using the quantum Ehrenfest method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the "normal modes" of the electron dynamics. We observe an isomorphic relationship between the electron dynamics normal modes and the nuclear dynamics, seen in the vibrational normal modes. The FT spectra obtained this way show bands that are characteristic of the energy differences between the adiabatic hole states. These bands contain individual peaks that are in one-to-one correspondence with atom pair (+·) ↔ (·+) resonances, which, in turn, stimulate nuclear motion involving the atom pair. With such understanding, we anticipate "designer" coherent superpositions that can drive nuclear motion in a particular direction.


Assuntos
Elétrons , Glicina , Cátions , Eletrônica , Movimento (Física)
15.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885829

RESUMO

In this work, we report a complete analysis by theoretical and spectroscopic methods of the short-time behaviour of 4-(dimethylamino)benzonitrile (DMABN) in the gas phase as well as in cyclohexane, tetrahydrofuran, acetonitrile, and water solution, after excitation to the La state. The spectroscopic properties of DMABN were investigated experimentally using UV absorption and fluorescence emission spectroscopy. The computational study was developed at different electronic structure levels and using the Polarisable Continuum Model (PCM) and explicit solvent molecules to reproduce the solvent environment. Additionally, excited state quantum dynamics simulations in the diabatic picture using the direct dynamics variational multiconfigurational Gaussian (DD-vMCG) method were performed, the largest quantum dynamics "on-the-fly" simulations performed with this method until now. The comparison with fully converged multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) dynamics on parametrised linear vibronic coupling (LVC) potentials show very similar population decays and evolution of the nuclear wavepacket. The ring C=C stretching and three methyl tilting modes are identified as the responsible motions for the internal conversion from the La to the Lb states. No major differences are observed in the ultrafast initial decay in different solvents, but we show that this effect depends strongly on the level of electronic structure used.

16.
Phys Chem Chem Phys ; 23(41): 23684-23695, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34642723

RESUMO

Gaussian wavepacket methods are becoming popular for the investigation of nonadiabatic molecular dynamics. In the present work, a recently developed efficient algorithm for the Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method has been used to describe the multidimensional photodissociation dynamics of phenol including all degrees of freedom. Full-dimensional quantum dynamic calculations including for the first time six electronic states (1ππ, 11ππ*, 11πσ*, 21πσ*, 21ππ*, 31ππ*), along with a comparison to an existing analytical 4-state model for the potential energy surfaces are presented. Including the fifth singlet excited state is shown to have a significant effect on the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. State population and flux analysis from the DD-vMCG simulations of phenol provided further insights into the decay mechanism, confirming the idea of rapid relaxation to the ground state through the 1ππ/11πσ* conical intersection.

17.
J Chem Phys ; 155(8): 080401, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470339
18.
J Phys Chem Lett ; 12(29): 6901-6906, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279954

RESUMO

The C4H4 isomer cyclobutadiene (CBD) is the prime model for antiaromaticity and thus a molecule of considerable interest in chemistry. Because it is highly reactive, it can only be studied under isolated conditions. Its electronic structure is characterized by a pseudo-Jahn-Teller effect in the neutral and a E ⊗ ß Jahn-Teller effect in the cation. As a result, recording photoelectron spectra as well as describing them theoretically has been challenging. Here we present the photoion mass-selected threshold photoelectron spectrum of cyclobutadiene together with a simulation based on time-dependent wavepacket dynamics that includes vibronic coupling in the ion, taking into account eight vibrational modes in the cation. Excellent agreement between theory and experiment is found, and the ionization energy is revised to 8.06 ± 0.02 eV.

19.
J Phys Chem Lett ; 12(23): 5639-5643, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34110826

RESUMO

The primary event occurring during the E-to-Z photoisomerization reaction of retinal protonated Schiff base (rPSB) is single-to-double bond inversion. In this work we examine the nuclear dynamics that occurs when the initial excited state is a superposition of the S1 and S2 electronic excited states that might be created in a laser experiment. The nuclear dynamics is dominated by double bond inversion that is parallel to the derivative coupling vector of S1 and S2. Thus, the molecule behaves as if it were at a conical intersection even if the states are nondegenerate.

20.
J Chem Phys ; 154(14): 144106, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858146

RESUMO

We report on first applications of the Multi-Layer Gaussian-based Multi-Configuration Time-Dependent Hartree (ML-GMCTDH) method [Römer et al., J. Chem. Phys. 138, 064106 (2013)] beyond its basic two-layer variant. The ML-GMCTDH scheme provides an embedding of a variationally evolving Gaussian wavepacket basis into a hierarchical tensor representation of the wavefunction. A first-principles parameterized model Hamiltonian for ultrafast non-adiabatic dynamics in an oligothiophene-fullerene charge transfer complex is employed, relying on a two-state linear vibronic coupling model that combines a distribution of tuning type modes with an intermolecular coordinate that also modulates the electronic coupling. Efficient ML-GMCTDH simulations are carried out for up to 300 vibrational modes using an implementation within the QUANTICS program. Excellent agreement with reference ML-MCTDH calculations is obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...