Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6681): 426-432, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271520

RESUMO

Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry-reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.

2.
PNAS Nexus ; 2(5): pgad140, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37168672

RESUMO

Measurement-based estimates of greenhouse gas (GHG) emissions from complex industrial operations are challenging to obtain, but serve as an important, independent check on inventory-reported emissions. Such top-down estimates, while important for oil and gas (O&G) emissions globally, are particularly relevant for Canadian oil sands (OS) operations, which represent the largest O&G contributor to national GHG emissions. We present a multifaceted top-down approach for estimating CO2 emissions that combines aircraft-measured CO2/NOx emission ratios (ERs) with inventory and satellite-derived NOx emissions from Ozone Monitoring Instrument (OMI) and TROPOspheric Ozone Monitoring Instrument (TROPOMI) and apply it to the Athabasca Oil Sands Region (AOSR) in Alberta, Canada. Historical CO2 emissions were reconstructed for the surface mining region, and average top-down estimates were found to be >65% higher than facility-reported, bottom-up estimates from 2005 to 2020. Higher top-down vs. bottom-up emissions estimates were also consistently obtained for individual surface mining and in situ extraction facilities, which represent a growing category of energy-intensive OS operations. Although the magnitudes of the measured discrepancies vary between facilities, they combine such that the observed reporting gap for total AOSR emissions is ≥(31 ± 8) Mt for each of the last 3 years (2018-2020). This potential underestimation is large and broadly highlights the importance of continued review and refinement of bottom-up estimation methodologies and inventories. The ER method herein offers a powerful approach for upscaling measured facility-level or regional fossil fuel CO2 emissions by taking advantage of satellite remote sensing observations.

3.
Environ Sci Technol ; 55(19): 12831-12840, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524801

RESUMO

Tailings ponds in the oil sands (OS) region in Alberta, Canada, have been associated with fugitive emissions of volatile organic compounds (VOCs) and other pollutants to the atmosphere. However, the contribution of tailings ponds to the total fugitive emissions of VOCs from OS operations remains uncertain. To address this knowledge gap, a field study was conducted in the summer of 2017 at Suncor's Pond 2/3 to estimate emissions of a suite of pollutants including 68 VOCs using a combination of micrometeorological methods and measurements from a flux tower. The results indicate that in 2017, Pond 2/3 was an emission source of 3322 ± 727 tons of VOCs including alkanes, aromatics, and oxygenated and sulfur-containing organics. While the total VOC emissions were approximately a factor of 2 higher than those reported by Suncor, the individual VOC species emissions varied by up to a factor of 12. A chemical mass balance (CMB) receptor model was used to estimate the contribution of the tailings pond to VOC pollution events in a nearby First Nations and Metis community in Fort McKay. CMB results indicate that Suncor Pond 2/3 contributed up to 57% to the total mass of VOCs measured at Fort McKay, reinforcing the importance of accurate VOC emission estimation methods for tailings ponds.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás , Lagoas , Compostos Orgânicos Voláteis/análise
4.
Environ Sci Technol ; 54(23): 14936-14945, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186032

RESUMO

An "event-based" approach to characterize complex air pollutant mixtures was applied in the Oil Sands region of northern Alberta, Canada. This approach was developed to better-inform source characterization and attribution of the air pollution in the Indigenous community of Fort McKay, within the context of the lived experience of residents. Principal component analysis was used to identify the characteristics of primary pollutant mixtures, which were related to hydrocarbon emissions, fossil fuel combustion, dust, and oxidized and reduced sulfur compounds. Concentration distributions of indicator compounds were used to isolate sustained air pollution "events". Diesel-powered vehicles operating in the mines were found to be an important source during NOx events. Industry-specific volatile organic compound (VOC) profiles were used in a chemical mass balance model for source apportionment, which revealed that nearby oil sands operations contribute to 86% of the total mass of nine VOC species (2-methylpentane, hexane, heptane, octane, benzene, toluene, m,p-xylene, o-xylene, and ethylbenzene) during VOC events. Analyses of the frequency distribution of air pollution events indicate that Fort McKay is regularly impacted by multiple mixtures simultaneously, underscoring the limitations of an exceedance-based approach relying on a small number of air quality standards as the only tool to assess risk.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás , Compostos Orgânicos Voláteis/análise
5.
J Chem Phys ; 153(16): 164705, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138429

RESUMO

Methylglyoxal (MG)-an atmospherically important α-dicarbonyl implicated in aqueous-phase secondary organic aerosol formation-is known to be surface-active. Due to the presence of carbonyl moieties, MG can hydrate to form geminal diols in solution. Recently, it has been shown that MG exists predominantly as a monohydrate at the neat air-water interface. However, inorganic aerosol constituents have the potential to "salt-out" MG to the interface, shift its hydration equilibria, and catalyze self- and cross-oligomerization reactions. Here, we study the influence of the non-reactive salt, sodium chloride (NaCl), on the MG's surface adsorption and hydration state using vibrational sum frequency spectroscopy. The presence of NaCl is found to enhance MG's surface activity but not to the extent that water is fully excluded from the interface. Perturbations in the interfacial water structure are attributed to shifts in MG's hydration equilibrium at higher ionic strengths. Evidence of surface-active MG oligomer species is presented, but such oligomers are not thought to contribute significantly to the interfacial population. This work builds on the published studies on MG in pure water and gives insight into the interface's perturbation by NaCl, which has important implications for understanding MG's atmospheric fate.

6.
J Phys Chem A ; 122(15): 3837-3849, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29608301

RESUMO

Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Šdeep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.

7.
Phys Chem Chem Phys ; 17(33): 21458-69, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26220791

RESUMO

The use of amine scrubbers to trap carbon dioxide from flue gas streams is one of the most promising avenues for atmospheric carbon dioxide reduction. However, modifications are necessary to efficiently scale these scrubbers for use in fossil fuel plants. Current advances in tailoring amines for CO2 capture involve improvements of bulk kinetic and thermodynamic parameters, with little consideration to surface chemistry and behavior. Aqueous alkanolamine solutions, such as monoethanolamine (MEA), are currently highly favored sorbents in CO2 post-combustion capture. Although numerous studies have explored MEA-CO2 chemistry at the macroscopic scale, few have investigated the role of the interface in the gas adsorption process. Additionally, as these amines become more industrially ubiquitous, their presence on and the need to understand their behavior at atmospheric and environmental surfaces will increase. This study investigates the surface behavior of monoethanolamine at the vapor/water interface, with particular focus on MEA's surface orientation and footprint. Using vibrational sum frequency spectroscopy, surface tensiometry, and computational techniques, MEA is found to adopt a constrained gauche interfacial conformation with its methylene backbone oriented toward the vapor phase and its functional groups solvated in the bulk solution. Computational and experimental analysis agree well, giving a complete picture with vibrational mode assignments and surface orientation of MEA. These findings can assist in the tailoring of amine structures or to facilitate improvements in engineering design to exploit favorable surface chemistry, as well as to serve as a starting point toward understanding aqueous amine surface behavior relevant to environmental systems.

8.
J Phys Chem A ; 119(24): 6391-403, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25989368

RESUMO

Aqueous-phase processing of methylglyoxal (MG) has been suggested to constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected because its carbonyl moieties can hydrate to form geminal diols, as well as because MG and its hydration products can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active, but an improved description of its surface behavior is crucial to understanding MG-SOA formation. These studies investigate MG adsorption, focusing on its hydration state at the air-water interface, using a combined experimental and theoretical approach that involves vibrational sum frequency spectroscopy, molecular dynamics simulations, and density functional theory calculations. Together, the experimental and theoretical data show that MG exists predominantly in a singly hydrated state (diol) at the interface, with a diol-tetrol ratio at the surface higher than that for the bulk. In addition to exhibiting a strong surface activity, we find that MG significantly perturbs the water structure at the interface. The results have implications for understanding the atmospheric fate of methylglyoxal.


Assuntos
Aerossóis/química , Ar , Aldeído Pirúvico/química , Água/química , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica
9.
Acc Chem Res ; 47(5): 1587-94, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24785086

RESUMO

Chemical interactions at the air-ice interface are of great importance to local atmospheric chemistry but also to the concentrations of pollutants deposited onto natural snow and ice. However, the study of such processes has been hampered by the lack of general, surface-specific probes. Even seemingly basic chemical properties, such as the local concentration of chemical compounds, or the pH at the interface, have required the application of assumptions about solute distributions in frozen media. The measurements that have been reported have tended for the most part to focus on entire ice or snow samples, rather than strictly the frozen interface with the atmosphere. We have used glancing-angle laser spectroscopy to interrogate the air-ice interface; this has yielded several insights into the chemical interactions there. The linear fluorescence and Raman spectra thus measured have the advantage of easy interpretability; careful experimentation can limit their probe depth to that which is relevant to atmospheric heterogeneous processes. We have used these techniques to show that the environment at the interface between air and freshwater ice surfaces is distinct from that at the interface between air and liquid water. Acids such as HCl that adsorb to ice surfaces from the gas phase result in significantly different pH responses than those at liquid water surfaces. Further, the solvation of aromatic species is suppressed at freshwater ice surfaces compared with that at liquid water surfaces, leading to extensive self-association of aromatics at ice surfaces. Photolysis kinetics of these species are much faster than at liquid water surfaces; this can sometimes (but not always) be explained by red shifts in the absorption spectra of self-associated aromatics increasing the extent to which solar radiation is absorbed. The environment presented by frozen saltwater surfaces, in contrast, appears to be reasonably well-described by liquid water. The extent of hydrogen bonding and the solvation of adsorbed species are similar at liquid water surfaces and at frozen saltwater surfaces. Adsorbed acids and bases evoke similar pH responses at frozen saltwater ice surfaces and liquid water surfaces, and photochemical kinetics of at least some aromatic compounds at frozen saltwater ice surfaces are well-described by kinetics in liquid water. These differences are not observed in experiments that interrogate the entire ice sample (i.e., that do not distinguish between processes occurring in liquid regions within bulk ice and those at the air-ice interface). Our work has shown that in general, the chemistry occurring at salty frozen interfaces is well described as being cold aqueous chemistry, whereas that seen at the pure ice interface is not. These findings have significant implications for heterogeneous atmospheric processes in ice-covered environments.

10.
J Phys Chem Lett ; 4(17): 2994-8, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26706126

RESUMO

The proximity of nitrate anions to the air-water interface is thought to strongly influence their photodissociation quantum yield, due to a reduced solvent cage effect at the water surface. Although nitrate in aqueous solution exhibits little or no surface affinity, the release of gas phase NO2 (nitrate's primary photodissociation product) has been reported to be enhanced when halides, in particular bromide, are also present in solution. Here, we use glancing-angle Raman spectroscopy to investigate whether solutions containing both nitrate and halides show different propensities for nitrate at the air-water interface. We find that bromide enhances, and chloride has little effect on (or perhaps suppresses) the surface partitioning of nitrate anions.

11.
Phys Chem Chem Phys ; 12(11): 2648-54, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20200742

RESUMO

We report glancing-angle Raman spectra acquired at the surface of aqueous dimethyl sulfoxide solutions and demonstrate that this technique can be used to measure the surface concentration of solutes. The presence of some solute molecules at the surface suppresses the intensity of the OH-stretching band of water there. We used this phenomenon to study the interfacial reaction of gas-phase ozone with aqueous NaX solutions (X = Br, I) by monitoring the decrease in intensity of the OH-stretching band of water over time. UV-VIS analysis of the product solutions indicates that X(3)(-), formed from X(2) evolved in the ozonation reaction, is the species most likely responsible for the decrease in OH-stretching intensity at the surface. The dependence of the rate of OH-Raman signal loss at the water surface on the bulk halide concentration is well described by a Langmuir-Hinshelwood kinetic model. The Langmuir-Hinshelwood parameters indicated that iodide has a approximately 50 times greater propensity for the surface compared to bromide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...