Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 7(3): 100878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647401

RESUMO

Purpose: Atypical (World Health Organization [WHO] grade 2) and malignant (WHO grade 3) meningiomas have high rates of local recurrence, and questions remain about the role of adjuvant radiation therapy (RT) for patients with WHO grade 2 disease. These patients frequently require salvage therapy, and optimal management is uncertain given limited prospective data. We report on the long-term outcomes for patients with atypical and malignant meningiomas treated with surgery and/or RT at our institution. Methods and Materials: Data were collected through a retrospective chart review for all patients with WHO grade 2 or 3 meningiomas treated with surgery and/or RT at our institution between January 1992 and March 2017. Progression-free survival (PFS) and overall survival (OS) were described using the KaplanMeier estimator. The outcomes in the subgroups were compared with a log-rank test. A Cox proportional hazards model was used for the univariable and multivariable analyses of predictors of PFS. Results: A total of 66 patients were included in this analysis. The median follow-up was 12.4 years overall and 8.6 years among surviving patients. Fifty-two patients (78.8%) had WHO grade 2 meningiomas, and 14 patients (21.2%) had WHO grade 3 disease. Thirty-six patients (54.5%) were treated with surgery alone, 28 patients (42.4%) with surgery and adjuvant RT, and 2 patients (3%) with RT alone. Median PFS and OS were 3.2 years and 8.8 years, respectively. PFS was significantly improved with adjuvant RT compared with surgery alone (hazard ratio, 0.36; 95% confidence interval, 0.18-0.70). Patients with Ki-67 index >10% showed a trend toward worse PFS compared with patients with Ki-67 ≤10% (hazard ratio, 0.51; 95% confidence interval, 0.25-1.04). No significant differences in PFS or OS were observed with respect to Simpson or WHO grade. Conclusions: For patients with atypical or malignant meningiomas, adjuvant RT was associated with significantly improved PFS, and Ki-67 index >10% was associated with a trend toward worse PFS. Given the long-term survival, high recurrence rates, and efficacy of salvage therapy, patients with atypical and malignant meningiomas should be monitored systematically long after initial treatment.

2.
Radiat Res ; 197(3): 0, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724704

RESUMO

Delayed radiation myelopathy is a rare, but significant late side effect from radiation therapy that can lead to paralysis. The cellular and molecular mechanisms leading to delayed radiation myelopathy are not completely understood but may be a consequence of damage to oligodendrocyte progenitor cells and vascular endothelial cells. Here, we aimed to determine the contribution of endothelial cell damage to the development of radiation-induced spinal cord injury using a genetically defined mouse model in which endothelial cells are sensitized to radiation due to loss of the tumor suppressor p53. Tie2Cre; p53FL/+ and Tie2Cre; p53FL/- mice, which lack one and both alleles of p53 in endothelial cells, respectively, were treated with focal irradiation that specifically targeted the lumbosacral region of the spinal cord. The development of hindlimb paralysis was followed for up to 18 weeks after either a 26.7 Gy or 28.4 Gy dose of radiation. During 18 weeks of follow-up, 83% and 100% of Tie2Cre; p53FL/- mice developed hindlimb paralysis after 26.7 and 28.4 Gy, respectively. In contrast, during this period only 8% of Tie2Cre; p53FL/+ mice exhibited paralysis after 28.4 Gy. In addition, 8 weeks after 28.4 Gy the irradiated spinal cord from Tie2Cre; p53FL/- mice showed a significantly higher fractional area positive for the neurological injury marker glial fibrillary acidic protein (GFAP) compared with the irradiated spinal cord from Tie2Cre; p53FL/+ mice. Together, our findings show that deletion of p53 in endothelial cells sensitizes mice to the development of delayed radiation myelopathy indicating that endothelial cells are a critical cellular target of radiation that regulates myelopathy.


Assuntos
Traumatismos da Medula Espinal/radioterapia , Animais , Relação Dose-Resposta à Radiação , Células Endoteliais , Feminino , Proteína Glial Fibrilar Ácida/efeitos da radiação , Humanos , Masculino , Camundongos , Lesões Experimentais por Radiação , Radiação Ionizante , Medula Espinal/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/efeitos da radiação
3.
Radiother Oncol ; 157: 155-162, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545252

RESUMO

BACKGROUND AND PURPOSE: Late cardiac toxicity is a major side effect of radiation therapy (RT) for breast cancer. We developed and characterized a mouse model of radiation-induced heart disease that mimics the dose, fractionation, and beam arrangement of left breast and chest wall RT. MATERIAL AND METHODS: Female wild-type (C57BL6/J) and atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice (on a C57BL/6J background) on regular chow were treated with 2 Gy × 25 fractions of partial-heart irradiation via opposed tangential beams to the left chest wall. The changes in myocardial perfusion and cardiac function of C57BL/6J mice were examined by single-photon emission computed tomography (SPECT) and echocardiography, respectively. In addition to SPECT and echocardiography, the formation of calcified plaques and changes in cardiac function of ApoE-/- mice were examined by dual-energy microCT (DE-CT) and pressure-volume (PV) loop analysis, respectively. The development of myocardial fibrosis was examined by histopathology. RESULTS: Compared to unirradiated controls, irradiated C57BL/6J mice showed no significant changes by SPECT or echocardiography up to 18 months after 2 Gy × 25 partial-heart irradiation even though irradiated mice exhibited a modest increase in myocardial fibrosis. For ApoE-/- mice, 2 Gy × 25 partial-heart irradiation did not cause significant changes by SPECT, DE-CT, or echocardiography. However, PV loop analysis revealed a significant decrease in load-dependent systolic and diastolic function measures including cardiac output, dV/dtmax and dV/dt min 12 months after RT. CONCLUSIONS: Following clinically relevant doses of partial-heart irradiation in C57BL/6J and ApoE-/- mice, assessment with noninvasive imaging modalities such as echocardiography, SPECT, and DE-CT yielded no evidence of decreased myocardial perfusion and cardiac dysfunction related to RT. However, invasive hemodynamic assessment with PV loop analysis indicated subtle, but significant, changes in cardiac function of irradiated ApoE-/- mice. PV loop analysis may be useful for future preclinical studies of radiation-induced heart disease, especially if subtle changes in cardiac function are expected.


Assuntos
Coração , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Fracionamento da Dose de Radiação , Ecocardiografia , Feminino , Coração/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...