Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(1): 153-159, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762676

RESUMO

Overuse of pesticides can result in the development of resistance, secondary pest outbreaks, and pest resurgence due to a reduction in natural enemies. The present study compares the residual toxicity of lambda-cyhalothrin, a relatively nonselective insecticide, with abamectin, indoxacarb, and spinosad, compounds which have been reported to be less harmful to arthropod natural enemies. Two key cosmopolitan pests of crucifer crops, (Plutella xylostella) and (Myzus persicae), and two of their respective hymenopteran parasitoids, (Cotesia vestalis) and (Aphidius colemani) were used as representative pests and natural enemies. The pyrethroid lambda-cyhalothrin was found to be the most persistent toxicant against both pest and both parasitoid species tested, while the lactones abamectin and spinosad were the least persistent toxicants. A leaf wax stripping technique was used to compare the contact toxicity of insecticide residues against adult C. vestalis and A. colemani in the epicuticular wax layer. For each compound, removal of epicuticular wax reduced the 24 h residual toxicity (LC50) of fresh deposits (day 0) by about an order of magnitude against C. vestalis. A second residual toxicity experiment showed that removal of epicuticular wax significantly reduced the residual toxicity of each compound against A. colemani at 0, 7, and 14 d after application, with little or no detectable residual activity for the oxadiazine indoxacarb or abamectin/spinosad respectively after 14 d. The present data supports the view that in addition to the intrinsic toxicity of insecticides to natural enemies, differences in their persistence as foliar residues should also be considered in IPM systems.


Assuntos
Brassica , Himenópteros , Inseticidas , Animais , Inseticidas/toxicidade , Controle Biológico de Vetores
2.
Environ Entomol ; 51(5): 969-979, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36029067

RESUMO

We examined differences in the physiology and life history between dimorphs of the common pistachio psyllid, Agonoscena pistaciae (Burckhardt and Lauterer) (Hemiptera: Aphalaridae), and how they differ in elicitating host plant production of key metabolites and volatile compounds involved in the recruitment of herbivores and natural enemies. Summer morphs had higher activities of glutathione S-transferase, carboxylesterase, acetylcholinesterase, and cytochrome P450 monooxygenase, superoxide dismutase, catalase, peroxidase, phenoloxidase, and a higher total protein content compared to winter morphs, whereas the latter had higher amounts of lipid, carbohydrate, and glycogen. Winter morphs were heavier, with a higher chitin content and longer preoviposition period, but greater fecundity and longevity than summer morphs. A lower LC50 to thiamethoxam for winter morphs resulted in higher mortality following exposure to the recommended rate of this insecticide in a greenhouse trial. Feeding by winter morphs elicited more strongly the release of volatile compounds known to be attractive to other herbivores, whereas feeding by summer morphs elicited more strongly the release of volatiles implicated in the attraction of natural enemies. Feeding by psyllids increased the concentrations of nitrogenous compounds, carbohydrates, vitamins, and amino acids in plants, the winter morph eliciting larger changes and more improved host plant quality. We conclude that winter morphs are more vulnerable targets for chemical control in early spring, whereas management of summer morphs could rely more on conservation biological control.


Assuntos
Hemípteros , Inseticidas , Animais , Hemípteros/metabolismo , Inseticidas/farmacologia , Tiametoxam , Acetilcolinesterase/metabolismo , Catalase/metabolismo , Estações do Ano , Monofenol Mono-Oxigenase/metabolismo , Controle de Pragas , Glutationa Transferase/metabolismo , Quitina/metabolismo , Glicogênio/metabolismo , Aminoácidos/metabolismo , Superóxido Dismutase/metabolismo , Vitaminas/metabolismo , Lipídeos
4.
Microbiol Spectr ; 9(2): e0060421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704785

RESUMO

The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.


Assuntos
Bacillus thuringiensis/fisiologia , Hemolinfa , Insetos/microbiologia , Fenótipo , Proteômica , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias , Biofilmes/crescimento & desenvolvimento , Feminino , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
BMC Plant Biol ; 21(1): 78, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546586

RESUMO

BACKGROUND: The Plutella xylostella PxSDF2L1 gene was previously reported to enhance insect resistance to pathogen at high basal transcription rate. PxSDF2L1 shows similitude with the stromal cell-derived factor 2 (SDF2), an ER stress-induced chaperon protein that is highly conserved throughout animals and plants. The precise biological function of SDF2 is not clear, but its expression is required for innate immunity in plants. Here, we investigate whether a continuous expression of PxSDF2L1 in Nicotiana benthamiana can similarly confer resistance to plant pathogen, particularly, the black shank Phytophthora parasitica var. nicotianae. RESULTS: The N. benthamiana plants were inoculated with agrobacteria transformed with a PVX-based binary vector carrying the PxSDF2L1 gene; similar agroinoculation experiments with a PVX vector carrying the GFP gene were used for controls. In pot trials, agroinfected N. benthamiana plants constitutively expressing PxSDF2L1 showed a significant reduction of stem disease symptoms caused by the inoculation with P. parasitica, compared with controls. CONCLUSIONS: We confirm a role of PxSDF2L1 in resistance to black shank, with a potential application to engineering active resistance against this oomycete in the commercial N. tabacum species and propose its evaluation in other crop families and plant pathogens.


Assuntos
Resistência à Doença , Genes de Insetos , Mariposas/genética , Nicotiana/genética , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Potexvirus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo
6.
Toxins (Basel) ; 12(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575644

RESUMO

The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >2000-fold Vip3Aa resistance phenotype in a laboratory-selected colony of Heliothis virescens (Vip-Sel). Binding of 125I-labeled Vip3Aa to brush border membrane vesicles (BBMV) from 3rd instar larvae from Vip-Sel was not significantly different from binding in the reference susceptible colony. Interestingly, BBMV from Vip-Sel larvae showed dramatically reduced levels of membrane-bound alkaline phosphatase (mALP) activity, which was further confirmed by a strong downregulation of the membrane-bound alkaline phosphatase 1 (HvmALP1) gene. However, the involvement of HvmALP1 as a receptor for the Vip3Aa protein was not supported by results from ligand blotting and viability assays with insect cells expressing HvmALP1.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Lepidópteros/metabolismo , Proteínas de Membrana/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Fosfatase Alcalina/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Lepidópteros/genética , Proteínas de Membrana/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica
7.
Sci Rep ; 9(1): 2630, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796291

RESUMO

Peritrophins are associated with structural and functional integrity of peritrophic membranes (PM), structures composed of chitin and proteins. PM lines the insect midgut and has roles in digestion and protection from toxins. We report the full-length cDNA cloning, molecular characterization and functional analysis of SfPER, a novel PM peritrophin A protein, in Spodoptera frugiperda. The predicted amino acid sequence indicated SfPER's domain structure as a CMCMC-type, consisting of a signal peptide and three chitin-binding (C) domains with two intervening mucin-like (M) domains. Phylogenetic analysis determined a close relationship between SfPER and another S. frugiperda PM peritrophin partial sequence. SfPER transcripts were found in larvae and adults but were absent from eggs and pupae. Chitin affinity studies with a recombinant SfPER-C1 peritrophin A-type domain fused to SUMO/His-tag confirmed that SfPER binds to chitin. Western blots of S. frugiperda larval proteins detected different sized variants of SfPER along the PM, with larger variants found towards the posterior PM. In vivo suppression of SfPER expression did not affect susceptibility of larvae to Bacillus thuringiensis toxin, but significantly decreased pupal weight and adult emergence, possibly due to PM structural alterations impairing digestion. Our results suggest SfPER could be a novel target for insect control.


Assuntos
Proteínas de Insetos/metabolismo , Spodoptera/crescimento & desenvolvimento , Spodoptera/metabolismo , Animais , Membrana Celular/metabolismo , Quitina/metabolismo , Comportamento Alimentar , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Filogenia , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Spodoptera/genética
8.
Insect Sci ; 26(3): 479-498, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28872766

RESUMO

Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.


Assuntos
Proteínas de Bactérias , Mariposas/metabolismo , Transcriptoma , Animais , Biblioteca Gênica , Resistência a Inseticidas/genética , Larva/metabolismo , Mariposas/genética , Proteínas Ribossômicas/metabolismo , Serina Proteases/metabolismo
9.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213547

RESUMO

Laboratory selection with Vip3Aa of a field-derived population of Heliothis virescens produced >2,040-fold resistance in 12 generations of selection. The Vip3Aa-selected (Vip-Sel)-resistant population showed little cross-resistance to Cry1Ab and no cross-resistance to Cry1Ac. Resistance was unstable after 15 generations without exposure to the toxin. F1 reciprocal crosses between Vip3Aa-unselected (Vip-Unsel) and Vip-Sel insects indicated a strong paternal influence on the inheritance of resistance. Resistance ranged from almost completely recessive (mean degree of dominance [h] = 0.04 if the resistant parent was female) to incompletely dominant (mean h = 0.53 if the resistant parent was male). Results from bioassays on the offspring from backcrosses of the F1 progeny with Vip-Sel insects indicated that resistance was due to more than one locus. The results described in this article provide useful information for the insecticide resistance management strategies designed to overcome the evolution of resistance to Vip3Aa in insect pests.IMPORTANCEHeliothis virescens is an important pest that has the ability to feed on many plant species. The extensive use of Bacillus thuringiensis (Bt) crops or spray has already led to the evolution of insect resistance in the field for some species of Lepidoptera and Coleoptera. The development of resistance in insect pests is the main threat to Bt crops. The effective resistance management strategies are very important to prolong the life of Bt plants. Lab selection is the key step to test the assumption and predictions of management strategies prior to field evaluation. Resistant insects offer useful information to determine the inheritance of resistance and the frequency of resistance alleles and to study the mechanism of resistance to insecticides.


Assuntos
Proteínas de Bactérias/toxicidade , Resistência a Inseticidas , Lepidópteros/efeitos dos fármacos , Lepidópteros/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Cruzamentos Genéticos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Herança Multifatorial , Herança Paterna , Seleção Genética , Análise de Sobrevida
10.
Ecotoxicology ; 24(9): 1815-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26162322

RESUMO

The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Animais , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Longevidade/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia
11.
Environ Microbiol ; 17(3): 841-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24935069

RESUMO

Herbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore-induced changes on below-ground processes and communities is limited. Using a long-term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long-term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi-trophic interactions between above- and below-ground communities.


Assuntos
Biodiversidade , Herbivoria , Consórcios Microbianos , Microbiologia do Solo , Animais , Biomassa , Ciclo do Carbono , Ecossistema , Pradaria , Insetos , Moluscos , Plantas , Coelhos , Solo
12.
BMC Biol ; 12: 48, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24935031

RESUMO

BACKGROUND: Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The 'high dose/refuge strategy', in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. RESULTS: In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. CONCLUSIONS: Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance.


Assuntos
Bacillus thuringiensis/fisiologia , Evolução Biológica , Resistência a Inseticidas/genética , Oviposição/fisiologia , Spodoptera/fisiologia , Zea mays/genética , Zea mays/parasitologia , Animais , Comportamento Alimentar , Feminino , Fertilidade , Plantas Geneticamente Modificadas , Dinâmica Populacional
13.
Curr Opin Insect Sci ; 5: 66-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32846744

RESUMO

Gaining a better understanding of climate and atmospheric change effects on species interactions is one of the great challenges facing modern ecology. Here, we review the literature concerning the responses of insect herbivores and their natural enemies to atmospheric and climate change, focusing specifically on elevated concentrations of atmospheric CO2 and air temperatures. We recommend that future work on the responses of systems to climate change incorporates as far as possible the trophic complexity inherent in ecosystems, and where feasible, considers the effects of interrelated climate factors in tandem. Such studies will produce more realistic insights into how species interactions may respond under future climates.

14.
Proc Biol Sci ; 280(1769): 20131497, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24004937

RESUMO

Pesticide mixtures can reduce the rate at which insects evolve pesticide resistance. However, with live biopesticides such as the naturally abundant pathogen Bacillus thuringiensis (Bt), a range of additional biological considerations might affect the evolution of resistance. These can include ecological interactions in mixed infections, the different rates of transmission post-application and the impact of the native biodiversity on the frequency of mixed infections. Using multi-generation selection experiments, we tested how applications of single and mixed strains of Bt from diverse sources (natural isolates and biopesticides) affected the evolution of resistance in the diamondback moth, Plutella xylostella, to a focal strain. There was no significant difference in the rate of evolution of resistance between single and mixed-strain applications although the latter did result in lower insect populations. The relative survivorship of Bt-resistant genotypes was higher in the mixed-strain treatment, in part owing to elevated mortality of susceptible larvae in mixtures. Resistance evolved more quickly with treatments that contained natural isolates, and biological differences in transmission rate may have contributed to this. Our data indicate that the use of mixtures can have unexpected consequences on the fitness of resistant and susceptible insects.


Assuntos
Bacillus thuringiensis/fisiologia , Evolução Biológica , Resistência a Inseticidas , Mariposas/genética , Mariposas/microbiologia , Animais , Bacillus thuringiensis/genética , Feminino , Larva/genética , Larva/microbiologia , Masculino , Controle Biológico de Vetores , Seleção Genética
15.
PLoS One ; 8(7): e69013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894394

RESUMO

Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.


Assuntos
Afídeos/fisiologia , Secas , Herbivoria , Raízes de Plantas/fisiologia , Raízes de Plantas/parasitologia , Compostos Orgânicos Voláteis , Animais , Feminino , Interações Hospedeiro-Parasita , Masculino , Percepção Olfatória , Oviposição , Estresse Fisiológico
16.
Oecologia ; 172(4): 1095-104, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23292454

RESUMO

Drought can alter plant quality and the strength of trophic interactions between herbivore groups, and is likely to increase in occurrence and severity under climate change. We hypothesized that changes in plant chemistry due to root herbivory and drought stress would affect the performance of a generalist and a specialist aphid species feeding on a Brassica plant. High drought stress increased the negative effect of root herbivory on the performance of both aphid species (30% decrease in fecundity and 15% reduction in intrinsic rate of increase). Aphid performance was greatest at moderate drought stress, though the two species differed in which treatment combination maximized performance. Nitrogen concentration was greatest in high and moderately drought-stressed plants without root herbivores and moderately drought-stressed plants under low root herbivore density, and correlated positively with aphid fecundity for both species. Glucosinolate concentrations increased 62% under combined drought stress and root herbivory, and were positively correlated with extended aphid development time. Root herbivory did not influence relative water content and foliar biomass under normal water regimes but they decreased 24 and 63%, respectively, under high drought stress. This study shows that drought can alter the strength of interactions between foliar and root herbivores, and that plant chemistry is key in mediating such interactions. The two aphid species responded in a broadly similar way to root herbivore and drought-stress treatments, which suggests that generalized predictions of the effects of abiotic factors on interactions between above- and below-ground species may be possible.


Assuntos
Afídeos/fisiologia , Secas , Herbivoria , Animais , Biomassa , Brassica , Glucosinolatos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico , Água/fisiologia
17.
Annu Rev Entomol ; 58: 517-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23020617

RESUMO

Agricultural intensification and greater production of Brassica vegetable and oilseed crops over the past two decades have increased the pest status of the diamondback moth (DBM), Plutella xylostella L., and it is now estimated to cost the world economy US$4-5 billion annually. Our understanding of some fundamental aspects of DBM biology and ecology, particularly host plant relationships, tritrophic interactions, and migration, has improved considerably but knowledge of other aspects, e.g., its global distribution and relative abundance, remains surprisingly limited. Biological control still focuses almost exclusively on a few species of hymenopteran parasitoids. Although these can be remarkably effective, insecticides continue to form the basis of management; their inappropriate use disrupts parasitoids and has resulted in field resistance to all available products. Improved ecological understanding and the availability of a series of highly effective selective insecticides throughout the 1990s provided the basis for sustainable and economically viable integrated pest management (IPM) approaches. However, repeated reversion to scheduled insecticide applications has resulted in resistance to these and more recently introduced compounds and the breakdown of IPM programs. Proven technologies for the sustainable management of DBM currently exist, but overcoming the barriers to their sustained adoption remains an enormous challenge.


Assuntos
Controle de Insetos/métodos , Mariposas/fisiologia , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores/métodos
18.
J Econ Entomol ; 105(3): 964-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22812137

RESUMO

Microbial insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) have become increasingly important for pest management. In addition to crystal (Cry) insecticidal protein toxins formed during sporulation, vegetative insecticidal protein (Vip) toxins can be produced during the vegetative phase. Resistance to Cry toxins has been reported in laboratory- and field-selected populations of various Lepidoptera species and several studies have identified fitness costs associated with Cry toxin resistance. Here, fitness costs are examined in the first insect population to be reported with resistance to a Vip toxin, a laboratory-selected Vip3A-resistant subpopulation of the tobacco budworm, Heliothis virescens (L.) (Vip-Sel). The Vip-Sel population showed reduced survival to adult eclosion compared with an unselected subpopulation at all test temperatures, including the culture temperature (25 degrees C). Vip3A resistance was also associated with reduced egg viability and mating success and a lower intrinsic rate of population increase (r(m)) at temperatures below (20 degrees C) and above (30 degrees C) the optimal laboratory culture temperature. The latter findings agree with previous studies, that fitness costs associated with resistance are usually greater under stressful conditions. Such data can help predict the impact of fitness costs on the rate of development of resistance in the field and in the development of resistance management strategies that more fully exploit fitness costs.


Assuntos
Proteínas de Bactérias , Inseticidas , Mariposas , Temperatura , Animais , Feminino , Resistência a Inseticidas , Masculino , Oviparidade
19.
Ecol Lett ; 14(8): 765-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21635671

RESUMO

Classical models of the evolution of virulence predict that multiple infections should select for elevated virulence, if increased competitiveness arises from faster growth. However, diverse modes of parasite competition (resource-based, antagonism, immunity manipulation) can lead to adaptations with different implications for virulence. Using an experimental evolution approach we investigated the hypothesis that selection in mixed-strain infections will lead to increased antagonism that trades off against investment in virulence. Selection in mixed infections led to improved suppression of competitors in the bacterial insect pathogen Bacillus thuringiensis. Increased antagonism was associated with decreased virulence in three out of four selected lines. Moreover, mixed infections were less virulent than single-strain infections, and between-strain competition tended to decrease pathogen growth in vivo and in vitro. Spiteful interactions among these bacteria may be favoured because of the high metabolic costs of virulence factors and the high risk of mixed infections.


Assuntos
Bacillus thuringiensis/patogenicidade , Evolução Biológica , Interações Microbianas , Animais , Mariposas/microbiologia , Virulência
20.
Proc Biol Sci ; 278(1718): 2646-53, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21270031

RESUMO

Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography-mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant-herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment.


Assuntos
Brassica/química , Brassica/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Himenópteros/fisiologia , Lepidópteros/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Comportamento Animal/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...