Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449322
2.
Artigo em Inglês | MEDLINE | ID: mdl-38043639

RESUMO

Amphibious fishes on land encounter higher oxygen (O2) availability and novel energetic demands, which impacts metabolism. Previous work on the amphibious mangrove killifish (Kryptolebias marmoratus) has shown that cortisol becomes elevated in response to air exposure, suggesting a possible role in regulating metabolism as fish move into terrestrial environments. We tested the hypothesis that cortisol is the mechanism by which oxidative processes are upregulated during the transition to land in amphibious fishes. We used two groups of fish, treated fish (+metyrapone, a cortisol synthesis inhibitor) and control (-metyrapone), to determine the impact of cortisol during air exposure (0 and 1 h, 7 days) on O2 consumption, terrestrial locomotion, the phenotype of red skeletal muscle, and muscle lipid concentration. Metyrapone-treated fish had an attenuated elevation in O2 consumption rate during the water to air transition and an immediate reduction in terrestrial exercise performance relative to control fish. In contrast, we found no short- (0 h) or long-term (7 days) differences between treatments in the oxidative phenotype of red muscles, nor in muscle lipid concentrations. Our results suggest that cortisol stimulates the necessary increase in aerobic metabolism needed to fuel the physiological changes that amphibious fishes undergo during the acclimation to air, although further studies are required to determine specific mechanisms of cortisol regulation.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Ciprinodontiformes/fisiologia , Hidrocortisona/farmacologia , Metirapona/farmacologia , Oxigênio , Lipídeos
3.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38059428

RESUMO

To celebrate its centenary year, Journal of Experimental Biology (JEB) commissioned a collection of articles examining the past, present and future of experimental biology. This Commentary closes the collection by considering the important research opportunities and challenges that await us in the future. We expect that researchers will harness the power of technological advances, such as '-omics' and gene editing, to probe resistance and resilience to environmental change as well as other organismal responses. The capacity to handle large data sets will allow high-resolution data to be collected for individual animals and to understand population, species and community responses. The availability of large data sets will also place greater emphasis on approaches such as modeling and simulations. Finally, the increasing sophistication of biologgers will allow more comprehensive data to be collected for individual animals in the wild. Collectively, these approaches will provide an unprecedented understanding of 'how animals work' as well as keys to safeguarding animals at a time when anthropogenic activities are degrading the natural environment.


Assuntos
Meio Ambiente , Genômica , Animais
4.
J Exp Biol ; 226(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366313
5.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148563

RESUMO

Major ecological transitions such as the invasion of land by aquatic vertebrates may be facilitated by positive feedback between habitat choice and phenotypic plasticity. We used the amphibious fish Kryptolebias marmoratus to test the hypothesis that aquatic hypoxia, emergence behaviour and respiratory plasticity create this type of positive feedback loop that causes fish to spend increasing amounts of time on land. Terrestrially acclimated fish were more sensitive to aquatic hypoxia (emergence at higher PO2) and were less hypoxia tolerant (shorter time to loss of equilibrium) relative to water-acclimated fish, which are necessary conditions for positive feedback. Next, we tested the prediction that exposure to aquatic hypoxia causes fish to emerge frequently, reduce gill surface area, and become less hypoxia tolerant. Indeed, fish exposed to severe aquatic hypoxia spent almost 50% of the time out of water and coverage of the gill lamellae by an inter-lamellar cell mass almost doubled. Fish exposed to aquatic hypoxia that could emerge from water were also more sensitive to subsequent acute aquatic hypoxia and were less hypoxia tolerant than normoxia-exposed controls. These results are opposite those of fish that cannot escape from aquatic hypoxia and presumably arise owing to plastic changes that occur during air exposure. Together, these results indicate that emergence behaviour begets further emergence behaviour, driven by gill remodelling which reduces aquatic respiratory function. This type of positive feedback may explain how amphibious behaviour has repeatedly evolved in fishes that occupy hypoxic aquatic habitats despite the associated challenges of life on land.


Assuntos
Ciprinodontiformes , Peixes , Animais , Retroalimentação , Hipóxia , Plásticos , Água
6.
J Comp Physiol B ; 192(6): 701-711, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056931

RESUMO

When amphibious fishes are on land, gill function is reduced or eliminated and the skin is hypothesized to act as a surrogate site of ionoregulation. Skin ionocytes are present in many fishes, particularly those with amphibious life histories. We used nine closely related killifishes spanning a range of amphibiousness to first test the hypothesis that amphibious killifishes have evolved constitutively increased skin ionocyte density to promote ionoregulation on land. We found that skin ionocyte densities were constitutively higher in five of seven amphibious species examined relative to exclusively water-breathing species when fish were prevented from leaving water, strongly supporting our hypothesis. Next, to examine the scope for plasticity, we tested the hypothesis that skin ionocyte density in amphibious fishes would respond plastically to air-exposure to promote ionoregulation in terrestrial environments. We found that air-exposure induced plasticity in skin ionocyte density only in the two species classified as highly amphibious, but not in moderately amphibious species. Specifically, skin ionocyte density significantly increased in Anablepsoides hartii (168%) and Kryptolebias marmoratus (37%) following a continuous air-exposure, and only in K. marmoratus (43%) following fluctuating air-exposure. Collectively, our data suggest that highly amphibious killifishes have evolved both increased skin ionocyte density as well as skin that is more responsive to air-exposure compared to exclusively water-breathing and less amphibious species. Our findings are consistent with the idea that gaining the capacity for cutaneous ionoregulation is a key evolutionary step that enables amphibious fishes to survive on land.


Assuntos
Fundulidae , Peixes Listrados , Adaptação Fisiológica , Animais , Peixes Listrados/fisiologia , Pele , Água
7.
J Exp Zool A Ecol Integr Physiol ; 337(7): 776-784, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727120

RESUMO

Many fishes encounter periods of prolonged darkness within their lifetime, yet the consequences for the visual system are poorly understood. We used an amphibious fish (Kryptolebias marmoratus) that occupies dark terrestrial environments during seasonal droughts to test whether exposure to prolonged darkness diminishes visual performance owing to reduced optic tectum (OT) size and/or neurogenesis. We performed a 3-week acclimation with a 2 ×$\times $ 2 factorial design, in which fish were either acclimated to a 12 h:12 h or 0 h:24 h light:dark photoperiod in water or in air. We found that water-exposed fish had poorer visual acuity when acclimated to the dark, while air-acclimated fish had poorer visual acuity regardless of photoperiod. The ability of K. marmoratus to capture aerial prey from water followed a similar trend, suggesting that good vision is important for hunting effectively. Changes in visual acuity did not result from changes in OT size, but air-acclimated fish had 37% fewer proliferating cells in the OT than water-acclimated fish. As K. marmoratus are unable to eat on land, reducing cell proliferation in the OT may serve as a mechanism to reduce maintenance costs associated with the visual system. Overall, we suggest that prolonged darkness and air exposure can impair vision in K. marmoratus, and that changes in visual performance may be mediated, in part, by OT neurogenesis. More broadly, we show that plastic changes to the visual system of fishes can have potential consequences for organismal performance and fitness.


Assuntos
Ciprinodontiformes , Aclimatação/fisiologia , Animais , Ciprinodontiformes/fisiologia , Água
8.
J Comp Physiol B ; 192(3-4): 473-488, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441298

RESUMO

The gills are the primary site of exchange in fishes. However, during early life-stages or in amphibious fishes, ionoregulation and gas-exchange may be primarily cutaneous. Given the similarities between larval and amphibious fishes, we hypothesized that cutaneous larval traits are continuously expressed in amphibious fishes across all life-stages to enable the skin to be a major site of exchange on land. Alternatively, we hypothesized that cutaneous larval traits disappear in juvenile stages and are re-expressed in amphibious species in later life-stages. We surveyed six species spanning a range of amphibiousness and characterized cutaneous ionocytes and neuroepithelial cells (NECs) as representative larval skin traits at up to five stages of development. We found that skin ionocyte density remained lower and constant in exclusively water-breathing, relative to amphibious species across development, whereas in amphibious species ionocyte density generally increased. Additionally, adults of the most amphibious species had the highest cutaneous ionocyte densities. Surprisingly, cutaneous NECs were only identified in the skin of one amphibious species (Kryptolebias marmoratus), suggesting that cutaneous NECs are not a ubiquitous larval or amphibious skin trait, at least among the species we studied. Our data broadly supports the continuous-expression hypothesis, as three of four amphibious experimental species expressed cutaneous ionocytes in all examined life-stages. Further, the increasing density of cutaneous ionocytes across development in amphibious species probably facilitates the prolonged occupation of terrestrial habitats.


Assuntos
Fundulidae , Peixes Listrados , Animais , Peixes/fisiologia , Brânquias/fisiologia , Peixes Listrados/fisiologia , Larva , Pele
9.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303097

RESUMO

Understanding the mechanisms that create phenotypic variation within and among populations is a major goal of physiological ecology. Variation may be a consequence of functional trade-offs (i.e. improvement in one trait comes at the expense of another trait) or alternatively may reflect the intrinsic quality of an organism (i.e. some individuals are simply better overall performers than others). There is evidence for both ideas in the literature, suggesting that environmental context may mediate whether variation results from trade-offs or differences in individual quality. We tested this overarching 'context dependence' hypothesis by comparing the aquatic and terrestrial athletic performance of the amphibious fish Kryptolebias marmoratus captured from two contrasting habitats, a large pond and small burrows. Overall, pond fish were superior terrestrial athletes but burrow fish were better burst swimmers, suggestive of a performance trade-off at the population level. Within each population, however, there was no evidence of a performance trade-off. In burrow fish, athletic performance was positively correlated with muscle content and body condition, consistent with the individual quality hypothesis. In pond fish, there was only a relationship between glycolytic white muscle and aquatic burst performance. Notably, pond fish were in better body condition, which may mask relationships between condition and athletic performance. Overall, our data highlight that population-level trends are insufficient evidence for the existence of phenotypic trade-offs in the absence of similar within-population patterns. Furthermore, we only found evidence for the individual quality hypothesis in one population, suggesting that patterns of phenotypic covariance are context dependent.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Composição Corporal , Ciprinodontiformes/fisiologia , Ecossistema , Peixes , Humanos , Natação
11.
Proc Biol Sci ; 288(1965): 20212324, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34933603

RESUMO

Cortisol is a major osmoregulatory hormone in fishes. Cortisol acts upon the gills, the primary site of ionoregulation, through modifications to specialized ion-transporting cells called ionocytes. We tested the hypothesis that cortisol also acts as a major regulator of skin ionocyte remodelling in the amphibious mangrove rivulus (Kryptolebias marmoratus) when gill function ceases during the water-to-land transition. When out of water, K. marmoratus demonstrated a robust cortisol response, which was linked with the remodelling of skin ionocytes to increase cell cross-sectional area and Na+-K+-ATPase (NKA) content, but not when cortisol synthesis was chemically inhibited by metyrapone. Additionally, we discovered a novel morphology of skin-specific ionocyte that are spikey with multiple cell processes. Spikey ionocytes increased in density, cell cross-sectional area and NKA content during air exposure, but not in metyrapone-treated fish. Our findings demonstrate that skin ionocyte remodelling during the water-to-land transition in amphibious fish is regulated by cortisol, the same hormone that regulates gill ionocyte remodelling in salinity-challenged teleosts, suggesting conserved hormonal function across diverse environmental disturbances and organs in fishes.


Assuntos
Ciprinodontiformes , Hidrocortisona , Animais , Ciprinodontiformes/fisiologia , Brânquias/anatomia & histologia , Metirapona , Pele , Água
12.
Biol Lett ; 17(9): 20210329, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34520682

RESUMO

In fish, vision may be impaired when eye tissue is in direct contact with environmental conditions that limit aerobic ATP production. We hypothesized that the visual acuity of fishes exposed to hydrogen sulfide (H2S)-rich water would be altered owing to changes in cytochrome c oxidase (COX) activity. Using the H2S-tolerant mangrove rivulus (Kryptolebias marmoratus), we showed that a 10 min exposure to greater than or equal to 200 µM of H2S impaired visual acuity and COX activity in the eye. Visual acuity and COX activity were restored in fish allowed to recover in H2S-free water for up to 1 h. Since K. marmoratus are found in mangrove pools with H2S concentrations exceeding 1000 µM, visual impairment may impact predator avoidance, navigation and foraging behaviour in the wild.


Assuntos
Ciprinodontiformes , Sulfeto de Hidrogênio , Animais , Sulfetos , Acuidade Visual , Áreas Alagadas
13.
Physiology (Bethesda) ; 36(5): 307-314, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431416

RESUMO

Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.


Assuntos
Evolução Biológica , Peixes , Animais , Humanos , Estilo de Vida
14.
Proc Biol Sci ; 288(1953): 20210603, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130503

RESUMO

Amphibious fishes transition between aquatic and terrestrial habitats, and must therefore learn to navigate two dramatically different environments. We used the amphibious killifish Kryptolebias marmoratus to test the hypothesis that the spatial learning ability of amphibious fishes would be altered by exposure to terrestrial environments because of neural plasticity in the brain region linked to spatial cognition (dorsolateral pallium). We subjected fish to eight weeks of fluctuating air-water conditions or terrestrial exercise before assessing spatial learning using a bifurcating T-maze, and neurogenesis in the dorsolateral pallium by immunostaining for proliferating cell nuclear antigen. In support of our hypothesis, we found that air-water fluctuations and terrestrial exercise improved some markers of spatial learning. Moreover, air-water and exercised fish had 39% and 46% more proliferating cells in their dorsolateral pallium relative to control fish, respectively. Overall, our findings suggest that fish with more terrestrial tendencies may have a cognitive advantage over those that remain in water, which ultimately may influence their fitness in both aquatic and terrestrial settings. More broadly, understanding the factors that promote neural and behavioural plasticity in extant amphibious fishes may provide insights into how ancestral fishes successfully colonized novel terrestrial environments before giving rise to land-dwelling tetrapods.


Assuntos
Fundulidae , Peixes Listrados , Animais , Ecossistema , Aprendizagem Espacial , Água
15.
J Comp Physiol B ; 191(4): 681-699, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023926

RESUMO

Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Brânquias , Hipóxia , Peixe-Zebra
16.
J Exp Biol ; 224(Pt 2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33328287

RESUMO

The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.


Assuntos
Ciprinodontiformes , Peixes Listrados , Animais , Genômica , Pele , Água
17.
Artigo em Inglês | MEDLINE | ID: mdl-33301892

RESUMO

In his early career, August Krogh made fundamental discoveries of the properties of cutaneous respiration in fish, frogs and other vertebrates. Following Krogh's example, the study of amphibious fishes provides an excellent model to understand how the skin morphology and physiological mechanisms evolved to meet the dual challenges of aquatic and terrestrial environments. The skin of air-exposed fishes takes on many of the functions that are typically associated with the gills of fish in water: gas exchange, gas sensing, iono- and osmoregulation, and nitrogen excretion. The skin of amphibious fishes has capillaries close to the surface in the epidermis. Skin ionocytes or mitochondrial-rich cells (MRCs) in the epidermis are thought to be responsible for ion exchange, as well as ammonia excretion in the amphibious mangrove rivulus Kryptolebias marmoratus. Ammonia gas (NH3) moves down the partial pressure gradient from skin capillaries to the surface through ammonia transporters (e.g., Rhcg) and NH3 is volatilized from the mucus film on the skin. Future studies are needed on the skin of amphibious fishes from diverse habitats to understand more broadly the role of the skin as a multifunctional organ.


Assuntos
Ciprinodontiformes/fisiologia , Brânquias/fisiologia , Osmorregulação/fisiologia , Fenômenos Fisiológicos Respiratórios , Fenômenos Fisiológicos da Pele , Animais , Ecossistema , Modelos Biológicos , Nitrogênio/metabolismo , Água/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-33217558

RESUMO

When the amphibious mangrove rivulus (Kryptolebias marmoratus) leaves water for extended periods, hemoglobin-O2 binding affinity increases. We tested the hypothesis that the change in affinity was a consequence of hemoglobin isoform switching driven by exposure to environments associated with increased internal CO2 levels. We exposed K. marmoratus to either water (control, pH 8.1), air, aquatic hypercarbia (5.1 kPa CO2, pH 6.6-6.8), or aquatic acid (isocarbic control, pH 6.6-6.8), for 7 days, and measured hemoglobin-O2 affinity spectrophotometrically. We found that mangrove rivulus compensated for elevated CO2 and aquatic acid exposure by shifting hemoglobin-O2 affinity back to aquatic (control) levels when measured at an ecologically-relevant high CO2 level that would be experienced in vivo. Using proteomics, we found that the hemoglobin subunits present in the blood did not change between treatments, but air and aquatic acid exposure altered the abundance of cathodic hemoglobin subunits. We therefore conclude that hemoglobin isoform switching is not a primary strategy used by mangrove rivulus to adjust P50 under these conditions. Abundances of other RBC proteins also differed between treatment groups relative to control fish (e.g. Rhesus protein type A, band 3 anion exchanger). Overall, our data indicate that both aquatic hypercarbia and aquatic acidosis create similar changes in hemoglobin-O2 affinity as air exposure. However, the protein-level consequences differ between these groups, indicating that the red blood cell response of mangrove rivulus can be modulated depending on the environmental cue received.


Assuntos
Aclimatação/fisiologia , Peixes/fisiologia , Hemoglobinas/metabolismo , Hipercapnia/fisiopatologia , Oxigênio/metabolismo , Animais
19.
J Exp Biol ; 223(Pt 16)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32616545

RESUMO

The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.


Assuntos
Ciprinodontiformes , Fundulidae , Aclimatação , Animais , Brânquias , Fenótipo
20.
Proc Biol Sci ; 287(1920): 20192796, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075528

RESUMO

The morphology of fish gills is closely linked to aerobic capacity and tolerance of environmental stressors such as hypoxia. The importance of gill surface area is well studied, but little is known about how the mechanical properties of gill tissues determine function. In some fishes, the bases of the gill filaments are surrounded by a calcified 'sheath' of unknown function. We tested two non-exclusive hypotheses: (i) calcified gill filaments enhance water flow through the gill basket, improving aquatic respiratory function, and (ii) in amphibious fishes, calcification provides support for gills out of water. In a survey of more than 100 species of killifishes and related orders, we found filament calcification was widespread and thus probably arose before the evolution of amphibious lifestyles in killifishes. Calcification also did not differ between amphibious and fully aquatic species, but terrestrial acclimation caused calcium deposition on the filaments of the killifish Kryptolebias marmoratus, suggesting a possible structural role when out of water. We found strong evidence supporting a role for filament calcification in enhancing aquatic respiratory function. First, acclimation to increased respiratory demands (hypoxia, elevated temperatures) induced calcium deposition on the filaments of K. marmoratus. Next, gentle removal of filament calcification decreased branchial resistance to water flow, indicating disruption of gill basket positioning. Thus, the mechanical properties of the gill filaments appear to play an important and previously unappreciated role in determining fish respiratory function.


Assuntos
Peixes/fisiologia , Brânquias/anatomia & histologia , Aclimatação , Animais , Brânquias/fisiologia , Hipóxia , Peixes Listrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...