Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 132(7): 567-77, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26187182

RESUMO

BACKGROUND: Voltage-gated Na(+) channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca(2+)/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. METHODS AND RESULTS: To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca(2+) handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. CONCLUSIONS: Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.


Assuntos
Arritmias Cardíacas/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Fosfosserina/metabolismo , Remodelação Ventricular/fisiologia , Acetanilidas/farmacologia , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/fisiopatologia , Constrição , Técnicas de Introdução de Genes , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/química , Fosforilação , Piperazinas/farmacologia , Processamento de Proteína Pós-Traducional , Ranolazina , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
2.
Circ Res ; 115(11): 929-38, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25239140

RESUMO

RATIONALE: Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, therapies to target select Nav1.5 properties have remained at the forefront of cardiovascular medicine. However, despite years of investigation, the fundamental pathways governing Nav1.5 membrane targeting, assembly, and regulation are still largely undefined. OBJECTIVE: Define the in vivo mechanisms underlying Nav1.5 membrane regulation. METHODS AND RESULTS: Here, we define the molecular basis of an Nav channel regulatory platform in heart. Using new cardiac-selective ankyrin-G(-/-) mice (conditional knock-out mouse), we report that ankyrin-G targets Nav1.5 and its regulatory protein calcium/calmodulin-dependent kinase II to the intercalated disc. Mechanistically, ßIV-spectrin is requisite for ankyrin-dependent targeting of calcium/calmodulin-dependent kinase II-δ; however, ßIV-spectrin is not essential for ankyrin-G expression. Ankyrin-G conditional knock-out mouse myocytes display decreased Nav1.5 expression/membrane localization and reduced INa associated with pronounced bradycardia, conduction abnormalities, and ventricular arrhythmia in response to Nav channel antagonists. Moreover, we report that ankyrin-G links Nav channels with broader intercalated disc signaling/structural nodes, as ankyrin-G loss results in reorganization of plakophilin-2 and lethal arrhythmias in response to ß-adrenergic stimulation. CONCLUSIONS: Our findings provide the first in vivo data for the molecular pathway required for intercalated disc Nav1.5 targeting/regulation in heart. Further, these new data identify the basis of an in vivo cellular platform critical for membrane recruitment and regulation of Nav1.5.


Assuntos
Potenciais de Ação , Anquirinas/metabolismo , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Anquirinas/genética , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Placofilinas/metabolismo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Bloqueadores dos Canais de Sódio/farmacologia , Espectrina/metabolismo
3.
Cardiovasc Res ; 102(1): 166-75, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24445605

RESUMO

AIMS: Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K(2P)) family members, despite their potential importance in modulation of heart function. METHODS AND RESULTS: Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K(2P) channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that ß(IV)-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing ß(IV)-spectrin lacking TREK-1 binding (qv(4J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal ß(IV)-spectrin levels in human heart failure. CONCLUSIONS: These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for ß(IV)-spectrin in organizing functional membrane domains critical for normal heart function.


Assuntos
Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Espectrina/metabolismo , Animais , Membrana Celular/metabolismo , Camundongos , Miocárdio/citologia
4.
Proc Natl Acad Sci U S A ; 110(43): 17576-81, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101510

RESUMO

Identified over a dozen years ago in the brain and pancreatic islet, ßIV-spectrin is critical for the local organization of protein complexes throughout the nervous system. ßIV-Spectrin targets ion channels and adapter proteins to axon initial segments and nodes of Ranvier in neurons, and ßIV-spectrin dysfunction underlies ataxia and early death in mice. Despite advances in ßIV-spectrin research in the nervous system, its role in pancreatic islet biology is unknown. Here, we report that ßIV-spectrin serves as a multifunctional structural and signaling platform in the pancreatic islet. We report that ßIV-spectrin directly associates with and targets the calcium/calmodulin-dependent protein kinase II (CaMKII) in pancreatic islets. In parallel, ßIV-spectrin targets ankyrin-B and the ATP-sensitive potassium channel. Consistent with these findings, ßIV-spectrin mutant mice lacking CaMKII- or ankyrin-binding motifs display selective loss of expression and targeting of key protein components, including CaMKIIδ. ßIV-Spectrin-targeted CaMKII directly phosphorylates the inwardly-rectifying potassium channel, Kir6.2 (alpha subunit of KATP channel complex), and we identify the specific residue, Kir6.2 T224, responsible for CaMKII-dependent regulation of KATP channel function. CaMKII-dependent phosphorylation alters channel regulation resulting in KATP channel inhibition, a cellular phenotype consistent with aberrant insulin regulation. Finally, we demonstrate aberrant KATP channel phosphorylation in ßIV-spectrin mutant mice. In summary, our findings establish a broader role for ßIV-spectrin in regulation of cell membrane excitability in the pancreatic islet, define the pathway for CaMKII local control in pancreatic beta cells, and identify the mechanism for CaMKII-dependent regulation of KATP channels.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Secretoras de Insulina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Espectrina/metabolismo , Animais , Anquirinas/metabolismo , Sítios de Ligação/genética , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Chlorocebus aethiops , Immunoblotting , Imuno-Histoquímica , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mutação , Fosforilação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ligação Proteica , Espectrina/genética
5.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23008441

RESUMO

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Cães , Variação Genética , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética
6.
J Clin Invest ; 120(10): 3508-19, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20877009

RESUMO

Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na(+) channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na(+) channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified ß(IV)-spectrin as a multifunctional regulatory platform for Na(+) channels in mice. We found that ß(IV)-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant ß(IV)-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na(+) channels, via direct phosphorylation by ß(IV)-spectrin-targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Coração/fisiologia , Transdução de Sinais , Espectrina/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Proteínas de Transporte/análise , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Fosforilação , Canais de Sódio/metabolismo
7.
Circ Res ; 107(1): 84-95, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20489164

RESUMO

RATIONALE: Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. OBJECTIVE: We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. METHODS AND RESULTS: We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. CONCLUSIONS: Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Família Multigênica/fisiologia , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(39): 16669-74, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805355

RESUMO

The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.


Assuntos
Motivos de Aminoácidos , Membrana Celular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Anquirinas/genética , Anquirinas/metabolismo , Sítios de Ligação , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Transfecção
9.
Cardiovasc Res ; 81(4): 742-9, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19074823

RESUMO

AIMS: Ion channel reorganization is a critical step in the pro-arrhythmogenic remodelling process that occurs in heart disease. Ankyrin-B (AnkB) is required for targeting and stabilizing ion channels, exchangers, and pumps. Despite a wealth of knowledge implicating the importance of AnkB in human cardiovascular physiology, nothing is known regarding the role of AnkB in common forms of acquired human disease. METHODS AND RESULTS: We present the first report of AnkB regulation following myocardial infarction (MI). AnkB protein levels were reduced in the infarct border zone 5 days following coronary artery occlusion in the canine. We also observed a dramatic increase in AnkB mRNA levels 5 days post-occlusion. Surprisingly, the expression of the upstream AnkB cytoskeletal component beta2-spectrin was unchanged in post-infarct tissues. However, protein levels and/or membrane expression of downstream AnkB-associated ion channels and transporters Na+/K+ ATPase, Na+/Ca2+ exchanger, and IP3 receptor were altered 5 days post-occlusion. Interestingly, protein levels of the protein phosphatase 2A, an AnkB-associated signalling protein, were significantly affected 5 days post-occlusion. AnkB and PP2A protein levels recovered by 14 days post-occlusion, whereas Na+/K+ ATPase levels recovered by 2 months post-occlusion. CONCLUSION: These findings reveal the first evidence of ankyrin remodelling following MI and suggest an unexpected divergence point for regulation between ankyrin and the underlying cytoskeletal network. These findings suggest a logical, but unexpected, molecular mechanism underlying ion channel and transporter remodelling following MI.


Assuntos
Anquirinas/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Animais , Anquirinas/genética , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Cães , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Proteína Fosfatase 2/metabolismo , RNA Mensageiro/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
10.
Am J Physiol Lung Cell Mol Physiol ; 287(4): L843-51, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15208094

RESUMO

H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+ transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631-L641, 2002). To understand the molecular basis for the stimulation of Na+ transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on alphabetagamma-epithelial Na+ channel (ENaC) and sgk1 expression. Na+ transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+ transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in alpha-ENaC mRNA and protein but without a detectable increase in betagamma-ENaC and sgk1. The early effect of cAMP on Na+ transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+ channels to the apical cell surface whereas the sustained effect requires the synthesis of alpha-ENaC.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/fisiologia , Sódio/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Cromonas/farmacologia , Colforsina/farmacologia , Dexametasona/farmacologia , Inibidores Enzimáticos/farmacologia , Canais Epiteliais de Sódio , Humanos , Proteínas Imediatamente Precoces , Cinética , Pulmão , Morfolinas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Canais de Sódio/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Vet Microbiol ; 94(1): 57-69, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12742716

RESUMO

Escherichia coli is commonly isolated in canine pyometra, but little is known of the virulence factors that may be involved in the precipitation of this disease. The aim of this study was to compare the prevalence of uropathogenic virulence factor (UVF) genes in E. coli isolates from canine pyometra and from feces of healthy bitches to evaluate their role in the pathogenesis of pyometra. E. coli from 23 cases of canine pyometra and from the feces of 24 healthy bitches were analyzed, by polymerase chain reaction, for UVF genes associated with canine and human urinary tract infections (UTIs). The prevalences of UVFs in E. coli from canine pyometra were similar to that in canine and human uropathogenic E. coli. The prevalence of pap was greater (P=0.036) for E. coli from pyometra (52%) than for fecal isolates (21%), and the papGIII allele was present in all pap-containing isolates. The prevalences of genes for alpha-haemolysin and cytotoxic necrotising factor 1 were not significantly higher (P=0.075) in E. coli from pyometra than from feces. The proportion of pyometra strains with >or=3 UVFs was higher (P=0.039) than that of fecal strains, suggesting that possession of >or=3 UVF genes enhances the pathogenicity of the strain. Our findings demonstrate that E. coli associated with canine pyometra are similar to uropathogenic strains, and that operons that encode P fimbriae, alpha-haemolysin and cytotoxic necrotising factor 1 probably enhance the virulence and pathogenicity of the strain in the canine genital tract.


Assuntos
Doenças do Cão/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Doenças Uterinas/veterinária , Fatores de Virulência/genética , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/genética , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Citotoxinas/química , Citotoxinas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Cães , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Feminino , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Hemaglutininas/química , Hemaglutininas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA , Doenças Uterinas/microbiologia , Virulência
12.
J Virol ; 77(4): 2385-99, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12551976

RESUMO

A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3' half of the genome.


Assuntos
Fibroblastos/virologia , Vírus da Anemia Infecciosa Equina/patogenicidade , Sequência de Aminoácidos , Animais , Células Cultivadas , Efeito Citopatogênico Viral , DNA Viral/análise , Cavalos , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/fisiologia , Dados de Sequência Molecular , Proteínas Virais/química , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...