Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 30(1-2): 94-101, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842832

RESUMO

Tissue engineering of exogenous skeletal muscle units (SMUs) through isolation of muscle satellite cells from muscle biopsies is a potential treatment method for acute volumetric muscle loss (VML). A current issue with this treatment process is the limited capacity for muscle stem cell (satellite cell) expansion in cell culture, resulting in a decreased ability to obtain enough cells to fabricate SMUs of appropriate size and structural quality and that produce native levels of contractile force. This study determined the impact of human recombinant irisin on the growth and development of three-dimensional (3D) engineered skeletal muscle. Muscle satellite cells were cultured without irisin (control) or with 50, 100, or 250 ng/mL of irisin supplementation. Light microscopy was used to analyze myotube formation with particular focus placed on the diameter and density of the monotubes during growth of the 3D SMU. Following the formation of 3D constructs, SMUs underwent measurement of maximum tetanic force to analyze contractile function, as well as immunohistochemical staining, to characterize muscle structure. The results indicate that irisin supplementation with 250 ng/mL significantly increased the average diameter of myotubes and increased the proliferation and differentiation of myoblasts in culture but did not have a consistent significant impact on force production. In conclusion, supplementation with 250 ng/mL of human recombinant irisin promotes the proliferation and differentiation of myotubes and has the potential for impacting contractile force production in scaffold-free tissue-engineered skeletal muscle.


Assuntos
Fibronectinas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Fibronectinas/farmacologia , Músculo Esquelético , Fibras Musculares Esqueléticas , Contração Muscular , Diferenciação Celular
2.
Tissue Eng Part A ; 28(9-10): 420-432, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34652973

RESUMO

Tissue engineering methodologies have the potential to treat volumetric muscle loss via the growth of exogenous skeletal muscle grafts from small autogenous muscle biopsies. A significant obstacle preventing the widespread use of engineered skeletal muscle grafts in a clinical setting is the high number of skeletal muscle stem cells, known as satellite cells, required for fabrication of human-sized skeletal muscle tissue. Additionally, there is a lack of work adapting engineered constructs created for animal models into skeletal muscle engineered from a primary human skeletal muscle cell source. For this study, we used scaffold-free tissue-engineered skeletal muscle units (SMUs) to determine the impact of cell seeding density on the ability to fabricate functional human engineered skeletal muscle. Following established protocols, human skeletal muscle isolates were cultured into SMUs at five different cell seeding densities: 1000, 2500, 5000, 10,000, and 25,000 cells/cm2. Following previous human SMU work, SMUs prepared at a cell seeding density of 10,000 cells/cm2 served as controls. Additionally, the impact of cell monolayer confluency on the outcome of human cell-sourced SMU fabrication was investigated at both the 1000 and 10,000 cells/cm2 seeding densities. Light microscopy was used to examine myotube formation and hypertrophy in cell monolayers. After the formation of three-dimensional constructs, SMUs underwent maximum tetanic isometric force production measurements and immunohistochemical staining to examine SMU contractile function and muscle-like structure, respectively. Results indicate that the 25,000 cells/cm2 cell seeding density was detrimental to the contractile function of human cell-sourced SMUs, which had significantly lower maximum tetanic forces compared with SMUs seeded at lower densities. Compared with control, low cell seeding densities (1000-5000 cells/cm2) have no detrimental impact on SMU skeletal muscle growth, maturation, or contractility. Cell cultures seeded at 1000 cells/cm2 and allowed to proliferate to 90-100% confluency before treatment in muscle differentiation media (MDM) resulted in SMUs with greater contractile forces and total muscle structure compared with cell cultures switched to MDM when underconfluent or overconfluent. In conclusion, initial cell seeding density for SMU fabrication can be decreased to as low as 1000 cells/cm2 without negatively impacting SMU muscle-like structure and function. Impact Statement Our research suggests that during the translation of skeletal muscle tissue engineering technologies from animal to human cell sources, initial starting cell seeding density can be significantly lowered without negatively impacting engineered skeletal muscle growth, maturation, or contractile function. Decreasing the initial cell density, and, thus, the muscle biopsy size required to fabricate an engineered human skeletal muscle, increases the potential for the clinical adoption of tissue-engineered based therapies for volumetric muscle loss.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Animais , Contagem de Células , Humanos , Contração Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Engenharia Tecidual/métodos
3.
Tissue Eng Part A ; 27(17-18): 1151-1159, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33203338

RESUMO

Skeletal muscle tissue engineering technologies have the potential to treat volumetric muscle loss (VML) by growing exogenous muscle tissue. However, there has been limited success in engineering human cell-sourced skeletal muscle with structure and function comparable to native adult human muscle. The use of growth factors at optimal concentrations and delivery times is critical in enhancing the in vitro myogenesis of satellite cells used in engineered skeletal muscle. The mitogenic protein human epidermal growth factor (hEGF) is of particular interest because it enhances satellite cell proliferation and sarcomeric structure formation in myogenic cell cultures. In this study, we used our scaffold-free tissue-engineered skeletal muscle units (SMUs) to examine the effects of hEGF on the structure and function of human cell-sourced engineered skeletal muscle. During our established SMU fabrication process, human muscle cell isolates were exposed to media treated with 7.5 nM hEGF at three different time spans during the 21-day cell culture period: 0 to 6 days postseeding (hEGF-treated Muscle Growth Media [MGM] Only), 7 to 21 days postseeding (hEGF-treated Muscle Differentiation Media (MDM) Only), and 0 to 21 days postseeding (hEGF-treated MGM+MDM). Control cell cultures were fed standard MGM and MDM (no hEGF treatment). During the fabrication process, light microscopy was used to examine proliferation and differentiation of myogenic cells in the monolayer. After SMU formation, the three-dimensional constructs underwent tetanic force production measurements to evaluate contractile function and immunohistochemical staining to examine SMU structure. Results indicated that hEGF administration impacted myogenesis, by increasing myotube diameter in hEGF-treated MGM only and hEGF-treated MDM-only cell cultures, and by increasing myotube density in hEGF-treated MGM+MDM cultures. The exposure of myogenic cells to hEGF during any time period of the fabrication process led to a significant increase in SMU myosin heavy-chain content. SMUs exposed to hEGF-treated MDM and hEGF-treated MGM+MDM exhibited greater cross-sectional areas and more organized sarcomeric structure. Furthermore, hEGF-treated MGM+MDM SMUs displayed significantly enhanced contractile function compared with controls, indicating advanced functional maturation. In conclusion, hEGF supplementation in human primary myogenic cell cultures advances tissue-engineered skeletal muscle structural and functional characteristics. Impact statement Our research suggests that human epidermal growth factor (hEGF) serves as a critical growth factor in enhancing in vitro skeletal muscle cell proliferation and differentiation during myogenesis and advances human skeletal muscle engineered tissues toward a more native adult skeletal muscle phenotype. Understanding the impact of hEGF on engineered skeletal muscle function and structure is valuable in determining the optimal culture conditions for the development of tissue engineering-based therapies for volumetric muscle loss.


Assuntos
Fator de Crescimento Epidérmico , Engenharia Tecidual , Diferenciação Celular , Humanos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético
4.
Tissue Eng Part C Methods ; 24(5): 263-271, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29490563

RESUMO

The growing deficit in suitable tissues for patients awaiting organ transplants demonstrates the clinical need for engineered tissues as alternative graft sources. Demonstrating safety and efficacy by tracking the migration and fate of implanted cells is a key consideration required for approval of promising engineered tissues. Cells from transgenic animals that express green fluorescent protein (GFP) are commonly used for this purpose. However, GFP can create difficulties in practice due to high levels of green autofluorescence in many musculoskeletal tissues. Tandem-dimer tomato (tdTomato) is a stable, robust red fluorescent protein that is nearly threefold brighter than GFP. Our objective was to create a line of transgenic rats that ubiquitously express tdTomato in all cells, driven by the human ubiquitin C promoter. We sought to determine the rats' utility in tissue engineering applications by fabricating engineered skeletal muscle units (SMUs) from isolated muscle-derived tdTomato cells. These tdTomato SMUs were implanted into a volumetric muscle loss (VML) defect of the tibialis anterior muscle in a rat ubiquitously expressing GFP. We also evaluated a novel method for modularly combining individual SMUs to create a larger engineered tissue. Following a recovery period of 28 days, we found that implantation of the modular SMU led to a significant decrease in the size of the remaining VML deficit. Histological analysis of explanted tissues demonstrated both tdTomato and GFP expression in the repair site, indicating involvement of both implanted and host cells in the regeneration process. These results demonstrate the successful generation of a tdTomato transgenic rat, and the use of these rats in tissue engineering and cell migration applications. Furthermore, this study successfully validated a method for scaling engineered tissues to larger sizes, a factor that will be important for repairing volumetric injuries in more clinically relevant models.


Assuntos
Movimento Celular , Engenharia Tecidual/métodos , Transgenes , Animais , Separação Celular , Rastreamento de Células , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Implantes Experimentais , Músculos/fisiologia , Ratos Transgênicos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...