Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Matrix Biol ; 132: 10-23, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851302

RESUMO

Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM), which showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulate that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence on shaping the extracellular matrix as well as on recruitment of immune cells to the TM. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.


Assuntos
Fibroblastos Associados a Câncer , Epigênese Genética , Macrófagos , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Microambiente Tumoral , Masculino , Humanos , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Linhagem Celular Tumoral , Comunicação Celular , Cisplatino/farmacologia , Células THP-1 , Proliferação de Células
3.
J Dtsch Dermatol Ges ; 22(8): 1115-1124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899945

RESUMO

BACKGROUND AND OBJECTIVES: Malignant sweat gland tumors are rare, with the most common being eccrine porocarcinoma (EP). Approximately 18% of benign eccrine poroma (EPO) transit to EP. Previous research has provided first insights into the mutational landscape of EP. However, only few studies have performed gene expression analyses. This leaves a gap in the understanding of EP biology and potential drivers of malignant transformation from EPO to EP. METHODS: Transcriptome profiling of 23 samples of primary EP and normal skin (NS). Findings from the EP samples were then tested in 17 samples of EPO. RESULTS: Transcriptome profiling revealed diversity in gene expression and indicated biologically heterogeneous sub-entities as well as widespread gene downregulation in EP. Downregulated genes included CD74, NDGR1, SRRM2, CDC42, ANXA2, KFL9 and NOP53. Expression levels of CD74, NDGR1, SRRM2, ANXA2, and NOP53 showed a stepwise-reduction in expression from NS via EPO to EP, thus supporting the hypothesis that EPO represents a transitional state in EP development. CONCLUSIONS: We demonstrated that EP is molecularly complex and that evolutionary trajectories correspond to tumor initiation and progression. Our results provide further evidence implicating the p53 axis and the EGFR pathway. Larger samples are warranted to confirm our findings.


Assuntos
Porocarcinoma Écrino , Perfilação da Expressão Gênica , Neoplasias das Glândulas Sudoríparas , Humanos , Porocarcinoma Écrino/genética , Porocarcinoma Écrino/patologia , Neoplasias das Glândulas Sudoríparas/genética , Neoplasias das Glândulas Sudoríparas/patologia , Neoplasias das Glândulas Sudoríparas/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Feminino , Masculino , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Pessoa de Meia-Idade
4.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607030

RESUMO

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Assuntos
Síndrome de Cockayne , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
5.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759499

RESUMO

Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.


Assuntos
Síndrome de Crigler-Najjar , Células-Tronco Pluripotentes Induzidas , Kernicterus , Humanos , Encéfalo , Citocinas , Bilirrubina
6.
Cells ; 12(17)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37681928

RESUMO

With a global increase in chronic kidney disease patients, alternatives to dialysis and organ transplantation are needed. Stem cell-based therapies could be one possibility to treat chronic kidney disease. Here, we used multipotent urine-derived renal progenitor cells (UdRPCs) to study nephrogenesis. UdRPCs treated with the JNK inhibitor-AEG3482 displayed decreased proliferation and downregulated transcription of cell cycle-associated genes as well as the kidney progenitor markers-SIX2, SALL1 and VCAM1. In addition, levels of activated SMAD2/3, which is associated with the maintenance of self-renewal in UdRPCs, were decreased. JNK inhibition resulted in less efficient oxidative phosphorylation and more lipid peroxidation via ferroptosis, an iron-dependent non-apoptotic cell death pathway linked to various forms of kidney disease. Our study is the first to describe the importance of JNK signalling as a link between maintenance of self-renewal and protection against ferroptosis in SIX2-positive renal progenitor cells.


Assuntos
Ferroptose , Sistema de Sinalização das MAP Quinases , Insuficiência Renal Crônica , Humanos , Rim , Diálise Renal , Células-Tronco
7.
Antioxidants (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627594

RESUMO

The global increase in the incidence of kidney failure constitutes a major public health problem. Kidney disease is classified into acute and chronic: acute kidney injury (AKI) is associated with an abrupt decline in kidney function and chronic kidney disease (CKD) with chronic renal failure for more than three months. Although both kidney syndromes are multifactorial, inflammation and oxidative stress play major roles in the diversity of processes leading to these kidney malfunctions. Here, we reviewed various publications on medicinal plants with antioxidant and anti-inflammatory properties with the potential to treat and manage kidney-associated diseases in rodent models. Additionally, we conducted a meta-analysis to identify gene signatures and associated biological processes perturbed in human and mouse cells treated with antioxidants such as epigallocatechin gallate (EGCG), the active ingredient in green tea, and the mushroom Ganoderma lucidum (GL) and in kidney disease rodent models. We identified EGCG- and GL-regulated gene signatures linked to metabolism; inflammation (NRG1, E2F1, NFKB1 and JUN); ion signalling; transport; renal processes (SLC12A1 and LOX) and VEGF, ERBB and BDNF signalling. Medicinal plant extracts are proving to be effective for the prevention, management and treatment of kidney-associated diseases; however, more detailed characterisations of their targets are needed to enable more trust in their application in the management of kidney-associated diseases.

8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445727

RESUMO

Podocytes are highly specialized cells that play a pivotal role in the blood filtration process in the glomeruli of the kidney, and their dysfunction leads to renal diseases. For this reason, the study and application of this cell type is of great importance in the field of regenerative medicine. Hypertension is mainly regulated by the renin-angiotensin-aldosterone system (RAAS), with its main mediator being angiotensin II (ANG II). Elevated ANG II levels lead to a pro-fibrotic, inflammatory, and hypertrophic milieu that induces apoptosis in podocytes. The activation of RAAS is critical for the pathogenesis of podocyte injury; as such, to prevent podocyte damage, patients with hypertension are administered drugs that modulate RAAS signaling. A prime example is the orally active, non-peptide, selective angiotensin-II-type I receptor (AGTR1) blocker losartan. Here, we demonstrate that SIX2-positive urine-derived renal progenitor cells (UdRPCs) and their immortalized counterpart (UM51-hTERT) can be directly differentiated into mature podocytes. These podocytes show activation of RAAS after stimulation with ANG II, resulting in ANG II-dependent upregulation of the expression of the angiotensin-II-type I receptor, AGTR1, and the downregulated expression of the angiotensin-II-type II receptor 2 (AGTR2). The stimulation of podocytes with losartan counteracts ANG II-dependent changes, resulting in a dependent favoring of the specific receptor from AGTR1 to AGTR2. Transcriptome analysis revealed 94 losartan-induced genes associated with diverse biological processes and pathways such as vascular smooth muscle contraction, the oxytocin signaling pathway, renin secretion, and ECM-receptor interaction. Co-stimulation with losartan and ANG II induced the exclusive expression of 106 genes associated with DNA methylation or demethylation, cell differentiation, the developmental process, response to muscle stretch, and calcium ion transmembrane transport. These findings highlight the usefulness of UdRPC-derived podocytes in studying the RAAS pathway and nephrotoxicity in various kidney diseases.


Assuntos
Hipertensão , Podócitos , Humanos , Losartan/farmacologia , Losartan/metabolismo , Angiotensina II/metabolismo , Podócitos/metabolismo , Redes Reguladoras de Genes , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Hipertensão/metabolismo
9.
Stem Cell Res ; 71: 103171, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506509

RESUMO

SIX2-positive urine derived renal progenitor cells were isolated from a male and female alpha1-antitrypsin deficiency (AATD) patients both harboring the homozygous PiZZ genotype. The cells were reprogrammed to generate two integration-free induced pluripotent stem cell (iPSC) lines by transfecting episomal-based plasmids expressing OCT4, SOX2, NANOG, c-MYC, KLF4 and LIN28. Pluripotency was confirmed by immunocytochemistry for associated markers and embryoid body-based differentiation into the three germ layers. The iPSC lines carried the parental PiZZ genotype. Comparative transcriptome analyses with human embryonic stem cell line H9 revealed a Pearson correlation of 0.945 for ISRM-AATD-iPSC-1 and 0.939 for ISRM-AATD-iPSC-2 respectively.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias
10.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175937

RESUMO

Acute kidney injury (AKI) is a major kidney disease with a poor clinical outcome. It is a common complication, with an incidence of 10-15% of patients admitted to hospital. This rate even increases for patients who are admitted to the intensive care unit, with an incidence of >50%. AKI is characterized by a rapid increase in serum creatinine, decrease in urine output, or both. The associated symptoms include feeling sick or being sick, diarrhoea, dehydration, decreased urine output (although occasionally the urine output remains normal), fluid retention causing swelling in the legs or ankles, shortness of breath, fatigue and nausea. However, sometimes acute kidney injury causes no signs or symptoms and is detected by lab tests. Therefore, the identification of cytokines for the early detection and diagnosis of AKI is highly desirable, as their application might enable the prevention of the progression from AKI to chronic kidney disease (CKD). In this study, we analysed the secretome of the urine of an AKI patient cohort by employing a kidney-biomarker cytokine assay. Based on these results, we suggest ADIPOQ, EGF and SERPIN3A as potential cytokines that might be able to detect AKI as early as 24 h post-surgery. For the later stages, as common cytokines for the detection of AKI in both male and female patients, we suggest VEGF, SERPIN3A, TNFSF12, ANPEP, CXCL1, REN, CLU and PLAU. These cytokines in combination might present a robust strategy for identifying the development of AKI as early as 24 h or 72 h post-surgery. Furthermore, we evaluated the effect of patient and healthy urine on human podocyte cells. We conclude that cytokines abundant in the urine of AKI patients trigger processes that are needed to repair the damaged nephron and activate TP53 and SIRT1 to maintain the balance between proliferation, angiogenesis, and cell cycle arrest.


Assuntos
Injúria Renal Aguda , Podócitos , Humanos , Masculino , Feminino , Citocinas , Sirtuína 1 , Injúria Renal Aguda/etiologia , Rim , Creatinina , Biomarcadores/urina , Proteína Supressora de Tumor p53
11.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766685

RESUMO

Recent demographic studies predict there will be a considerable increase in the number of elderly people within the next few decades. Aging has been recognized as one of the main risk factors for the world's most prevalent diseases such as neurodegenerative disorders, cancer, cardiovascular disease, and metabolic diseases. During the process of aging, a gradual loss of tissue volume and organ function is observed, which is partially caused by replicative senescence. The capacity of cellular proliferation and replicative senescence is tightly regulated by their telomere length. When telomere length is critically shortened with progressive cell division, cells become proliferatively arrested, and DNA damage response and cellular senescence are triggered, whereupon the "Hayflick limit" is attained at this stage. Podocytes are a cell type found in the kidney glomerulus where they have major roles in blood filtration. Mature podocytes are terminal differentiated cells that are unable to undergo cell division in vivo. For this reason, the establishment of primary podocyte cell cultures has been very challenging. In our present study, we present the successful immortalization of a human podocyte progenitor cell line, of which the primary cells were isolated directly from the urine of a 51-year-old male. The immortalized cell line was cultured over the course of one year (~100 passages) with high proliferation capacity, endowed with contact inhibition and P53 expression. Furthermore, by immunofluorescence-based expression and quantitative real-time PCR for the podocyte markers CD2AP, LMX1B, NPHS1, SYNPO and WT1, we confirmed the differentiation capacity of the immortalized cells. Finally, we evaluated and confirmed the responsiveness of the immortalized cells on the main mediator angiotensin II (ANGII) of the renin-angiotensin system (RAAS). In conclusion, we have shown that it is possible to bypass cellular replicative senescence (Hayflick limit) by TERT-driven immortalization of human urine-derived pre-podocyte cells from a 51-year-old African male.


Assuntos
Angiotensina II , Sistema Renina-Angiotensina , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Angiotensina II/farmacologia , Linhagem Celular , Células Cultivadas , Senescência Celular/genética
12.
PLoS One ; 18(1): e0270380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689432

RESUMO

In order to get a better insight into the timing of WT1 mutant Wilms tumor development, we compared the gene expression profiles of nine established WT1 mutant Wilms tumor cell lines with published data from different kidney cell types during development. Publications describing genes expressed in nephrogenic precursor cells, ureteric bud cells, more mature nephrogenic epithelial cells and interstitial cell types were used. These studies uncovered that the WT1 mutant Wilms tumor cells lines express genes from the earliest nephrogenic progenitor cells, as well as from more differentiated nephron cells with the highest expression from the stromal/interstitial compartment. The expression of genes from all cell compartments points to an early developmental origin of the tumor in a common stem cell. Although variability of the expression of specific genes was evident between the cell lines the overall expression pattern was very similar. This is likely dependent on their different genetic backgrounds with distinct WT1 mutations and the absence/presence of mutant CTNNB1.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Proteínas WT1/genética , Tumor de Wilms/patologia , Rim/patologia , Neoplasias Renais/patologia , Células-Tronco/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Expressão Gênica , Genes do Tumor de Wilms
14.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406662

RESUMO

High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin-angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin-angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.


Assuntos
Nefropatias , Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Humanos , Rim/metabolismo , Nefropatias/metabolismo , Losartan/farmacologia , Podócitos/metabolismo , Sistema Renina-Angiotensina
15.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269426

RESUMO

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.


Assuntos
Microcefalia , Síndrome de Quebra de Nijmegen , Dano ao DNA , Humanos , Microcefalia/genética , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/metabolismo , Organoides/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203286

RESUMO

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro models of kidney diseases and the development of prospective therapeutic options are urgently needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin, which can be employed to induce acute glomerular damage and to model glomerular disease. For this reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived kidney organoids can be used to model kidney-associated diseases and drug discovery.


Assuntos
Injúria Renal Aguda , Células-Tronco Pluripotentes Induzidas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Humanos , Rim , Organoides/metabolismo , Puromicina Aminonucleosídeo/metabolismo , Puromicina Aminonucleosídeo/farmacologia
17.
J Pers Med ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36675700

RESUMO

Chronic kidney disease (CKD) is a global health burden with a continuously increasing prevalence associated with an increasing incidence of diabetes and hypertension in aging populations. CKD is characterized by low glomerular filtration rate (GFR) and other renal impairments including proteinuria, thus implying that multiple factors may contribute to the etiology this disease. While there are indications of ethnic differences, it is hard to disentangle these from confounding social factors. Usually, CKD is detected in later stages of the disease when irreversible renal damage has already occurred, thus suggesting a need for early non-invasive diagnostic markers. In this study, we explored the urine secretome of a CKD patient cohort from Ghana with 40 gender-matched patients and 40 gender-matched healthy controls employing a kidney injury and a more general cytokine assay. We identified panels of kidney-specific cytokine markers, which were also gender-specific, and a panel of gender-independent cytokine markers. The gender-specific markers are IL10 and MME for male and CLU, RETN, AGER, EGFR and VEGFA for female. The gender-independent cytokine markers were APOA1, ANGPT2, C5, CFD, GH1, ICAM1, IGFBP2, IL8, KLK4, MMP9 and SPP1 (up-regulated) and FLT3LG, CSF1, PDGFA, RETN and VEGFA (down-regulated). APOA1-the major component of HDL particles-was up-regulated in Ghanaian CKD patients and its co-occurrence with APOL1 in a subpopulation of HDL particles may point to specific CKD-predisposing APOL1 haplotypes in patients of African descent-this, however, needs further investigation. The identified panels, though preliminary, lay down the foundation for the development of robust CKD-diagnostic assays.

18.
Front Cell Dev Biol ; 9: 717772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604216

RESUMO

Despite the uniform selection criteria for the isolation of human mesenchymal stem cells (MSCs), considerable heterogeneity exists which reflects the distinct tissue origins and differences between individuals with respect to their genetic background and age. This heterogeneity is manifested by the variabilities seen in the transcriptomes, proteomes, secretomes, and epigenomes of tissue-specific MSCs. Here, we review literature on different aspects of MSC heterogeneity including the role of epigenetics and the impact of MSC heterogeneity on therapies. We then combine this with a meta-analysis of transcriptome data from distinct MSC subpopulations derived from bone marrow, adipose tissue, cruciate, tonsil, kidney, umbilical cord, fetus, and induced pluripotent stem cells derived MSCs (iMSCs). Beyond that, we investigate transcriptome differences between tissue-specific MSCs and pluripotent stem cells. Our meta-analysis of numerous MSC-related data sets revealed markers and associated biological processes characterizing the heterogeneity and the common features of MSCs from various tissues. We found that this heterogeneity is mainly related to the origin of the MSCs and infer that microenvironment and epigenetics are key drivers. The epigenomes of MSCs alter with age and this has a profound impact on their differentiation capabilities. Epigenetic modifications of MSCs are propagated during cell divisions and manifest in differentiated cells, thus contributing to diseased or healthy phenotypes of the respective tissue. An approach used to reduce heterogeneity caused by age- and tissue-related epigenetic and microenvironmental patterns is the iMSC concept: iMSCs are MSCs generated from induced pluripotent stem cells (iPSCs). During iMSC generation epigenetic and chromatin remodeling result in a gene expression pattern associated with rejuvenation thus allowing to overcome age-related shortcomings (e.g., limited differentiation and proliferation capacity). The importance of the iMSC concept is underlined by multiple clinical trials. In conclusion, we propose the use of rejuvenated iMSCs to bypass tissue- and age-related heterogeneity which are associated with native MSCs.

19.
Sci Rep ; 11(1): 21108, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702899

RESUMO

SARS-CoV-2, the virus causing the COVID-19 pandemic emerged in December 2019 in China and raised fears it could overwhelm healthcare systems worldwide. Mutations of the virus are monitored by the GISAID database from which we downloaded sequences from four West African countries Ghana, Gambia, Senegal and Nigeria from February 2020 to April 2020. We subjected the sequences to phylogenetic analysis employing the nextstrain pipeline. We found country-specific patterns of viral variants and supplemented that with data on novel variants from June 2021. Until April 2020, variants carrying the crucial Europe-associated D614G amino acid change were predominantly found in Senegal and Gambia, and combinations of late variants with and early variants without D614G in Ghana and Nigeria. In June 2021 all variants carried the D614G amino acid substitution. Senegal and Gambia exhibited again variants transmitted from Europe (alpha or delta), Ghana a combination of several variants and in Nigeria the original Eta variant. Detailed analysis of distinct samples revealed that some might have circulated latently and some reflect migration routes. The distinct patterns of variants within the West African countries point at their global transmission via air traffic predominantly from Europe and only limited transmission between the West African countries.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Biologia Computacional/métodos , Mutação , SARS-CoV-2 , África Ocidental , Biodiversidade , China , Europa (Continente) , Gâmbia , Variação Genética , Genoma Viral , Geografia , Gana , Humanos , Nigéria , Filogenia , Senegal , Fatores de Tempo
20.
Malar J ; 20(1): 383, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565410

RESUMO

BACKGROUND: Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS: An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS: In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS: Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.


Assuntos
Degranulação Celular , Dano ao DNA , Malária Falciparum/fisiopatologia , Neutrófilos/fisiologia , Plasmodium falciparum/fisiologia , Transcriptoma , Teste em Amostras de Sangue Seco , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Neoplasias/complicações , Doenças Neurodegenerativas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA