Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 28(12): 2040-52, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18031621

RESUMO

AIM: To design and synthesize a novel class of peroxisome proliferator-activated receptors (PPAR)alpha agonists, which is obtained by the combination of the classical fibrate "head group", a linker with appropriate length and a chalcone. METHODS: Thirty seven compounds were designed and identified employing the virtual screening approach. Six compounds were then selected for synthesis and bioassay according to the virtual screening results, structural similarity, and synthetic complexity. RESULTS: Six new compounds (4b and 4d-h) were synthesized and bioassayed. All were found to be potent PPARalpha agonists, compound 4 h being the most prominent with a 50% effective concentration value of 0.06 micromol/L. CONCLUSION: This study provides a promising novel family of chalcones with a potential hypolipidemic effect.


Assuntos
Chalconas/química , Chalconas/farmacologia , Desenho de Fármacos , PPAR alfa/agonistas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray
2.
Artigo em Chinês | MEDLINE | ID: mdl-17075179

RESUMO

To investigate the role of ZmPIP1-1 and ZmPIP1-2 in water uptake of roots and drought resistance of crops, semi-quantitative PCR was used to examine the expression of ZmPIP1-1 and ZmPIP1-2 in root systems of different maize genotypes under water deficit. These genotypes showed different resistance to water shortage under field conditions. The reference gene to target genes was tubulin. Maize seedlings were grown by hydroponics in a growth chamber. Water deficit was imposed on the seedlings with PEG-6000. The result showed that ZmPIP1-1 was up-regulated under water deficit in root systems of plants of the filial generation 'Hudan 4' and the mother line 'Tiansi', which were resistant to water shortage, but there was no noticeable up-regulation of ZmPIP1-1 in the root systems of the father line '803', which was sensitive to water deprivation. The result also showed that the extent of up-regulation was positively correlated with drought resistance of maize (Fig.3). On the other hand, the expression of ZmPIP1-1 showed different degrees of tendency after different duration of water stress in the root systems of the maize seedlings of different genotypes. The result showed that ZmPIP1-2 was identically expressed in three different species of maize and under different water conditions. The results support the theory that the intercellular water transport contributes to increased water uptake in root systems under water deficit by up-regulating the number of some kinds of aquaporins. The increases amount of transcripts of aquaporins is positively correlated to drought resistance of plant varieties. But not all kinds of number of aquaporins is up-regulated during water shortage, some kinds of aquaporins are identically expressed under water deficit conditions and well watered conditions.


Assuntos
Secas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Zea mays/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...