Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 75(2): e12896, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458404

RESUMO

Melatonina natural harmless molecule-displays versatile roles in human health and crop disease control such as for rice blast. Rice blast, caused by the filamentous fungus Magnaporthe oryzae, is one devastating disease of rice. Application of fungicides is one of the major measures in the control of various crop diseases. However, fungicide resistance in the pathogen and relevant environmental pollution are becoming serious problems. By screening for possible synergistic combinations, here, we discovered an eco-friendly combination for rice blast control, melatonin, and the fungicide isoprothiolane. These compounds together exhibited significant synergistic inhibitory effects on vegetative growth, conidial germination, appressorium formation, penetration, and plant infection by M. oryzae. The combination of melatonin and isoprothiolane reduced the effective concentration of isoprothiolane by over 10-fold as well as residual levels of isoprothiolane. Transcriptomics and lipidomics revealed that melatonin and isoprothiolane synergistically interfered with lipid metabolism by regulating many common targets, including the predicted isocitrate lyase-encoding gene MoICL1. Furthermore, using different techniques, we show that melatonin and isoprothiolane interact with MoIcl1. This study demonstrates that melatonin and isoprothiolane function synergistically and can be used to reduce the dosage and residual level of isoprothiolane, potentially contributing to the environment-friendly and sustainable control of crop diseases.


Assuntos
Fungicidas Industriais , Magnaporthe , Melatonina , Oryza , Humanos , Fungicidas Industriais/farmacologia , Magnaporthe/genética , Melatonina/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Pathogens ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072465

RESUMO

Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes Fusarium wilt of banana, the most devastating disease on a banana plant. The genome of Foc TR4 encodes many candidate effector proteins. However, little is known about the functions of these effector proteins on their contributions to disease development and Foc TR4 virulence. Here, we discovered a secreted metalloprotease, FocM35_1, which is an essential virulence effector of Foc TR4. FocM35_1 was highly upregulated during the early stages of Foc TR4 infection progress in bananas. The FocM35_1 knockout mutant compromised the virulence of Foc TR4. FocM35_1 could interact with the banana chitinase MaChiA, and it decreased banana chitinase activity. FocM35_1 induced cell death in Nicotiana benthamiana while suppressing the INF1-induced hypersensitive response (HR), and its predicted enzymatic site was required for lesion formation and the suppression to INF1-induced HR on N. benthamiana leaves. Importantly, treatment of banana leaves with recombinant FocM35_1 accelerates Foc TR4 infection. Collectively, our study provides evidence that metalloprotease effector FocM35 seems to contribute to pathogen virulence by inhibiting the host immunity.

3.
Sci Rep ; 5: 11255, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066704

RESUMO

There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...