Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109836

RESUMO

Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) µM CuCl2 and 2.5 (B2.5) or 25 (B25) µM HBO3 for 24 weeks. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 µM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 µM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars, and increased the concentrations of starch, glucose, fructose, and total nonstructural carbohydrates (TNC) in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350; and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, and some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites, and genes that might lead to Cu tolerance in leaves.

2.
Environ Pollut ; 311: 119982, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988675

RESUMO

For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.


Assuntos
Citrus sinensis , Citrus , Alumínio/metabolismo , Alumínio/toxicidade , Citrus sinensis/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo
3.
Chemosphere ; 299: 134335, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339530

RESUMO

Little is known about the effects of pH-aluminum (Al) interactions on gene expression and/or metabolite profiles in plants. Eleven-week-old seedlings of Citrus sinensis were fertilized with nutrient solution at an Al level of 0 or 1 mM and a pH of 3.0 or 4.0 for 18 weeks. Increased pH mitigated Al-toxicity-induced accumulation of callose, an Al-sensitive marker. In this study, we identified more differentially expressed genes and differentially abundant metabolites in pH 4.0 + 1 mM Al-treated roots (P4AR) vs pH 4.0 + 0 mM Al-treated roots (P4R) than in pH 3.0 + 1 mM Al-treated roots (P3AR) vs pH 3.0 + 0 mM Al-treated roots (P3R), suggesting that increased pH enhanced root metabolic adaptations to Al-toxicity. Further analysis indicated that increased pH-mediated mitigation of root Al-toxicity might be related to several factors, including: enhanced capacity to maintain the homeostasis of phosphate and energy and the balance between generation and scavenging of reactive oxygen species and aldehydes; and elevated accumulation of secondary metabolites such as polyphenol, proanthocyanidins and phenolamides and adaptations of cell wall and plasma membrane to Al-toxicity.


Assuntos
Citrus sinensis , Citrus , Alumínio/metabolismo , Citrus sinensis/metabolismo , Concentração de Íons de Hidrogênio , Metaboloma , Raízes de Plantas/metabolismo , Transcriptoma
4.
Front Plant Sci ; 13: 823993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154231

RESUMO

Some members of the Rosaceae family, particularly pear, contain stone cells in their fruits. Although stone cells in pear fruits are well studied, relatively little attention has been given to loquat stone cells. Only a few reports have suggested a relationship between stone cell traits and storage and transport tolerance of loquat fruits. Previously, we generated the variety JT8 from the interspecific hybrid of the loquat cultivar Jiefangzhong (JFZ; Eriobotrya japonica Lindl. cv. Jiefangzhong, female parent) and wild Taiwanese loquat (TL; E. deflexa Nakai, male parent). The JT8 fruits had a granular feel, similar to that of pear fruits, due to the presence of stone cells. In this study, the shape, size, development, and distribution dynamics of stone cells of Eriobotrya plants were thoroughly investigated. The results showed that loquat stone cells are brachysclereids and often contain typical branching pits. Loquat stone cells were distributed as both single stone cells and in stone cell clusters (SCCs), and the density of the stone cells near the core was higher than that near the peel. Stone cell density first increased and then decreased during fruit development. These traits noted in Eriobotrya were very similar to those observed in pear, indicating a close relationship between loquat and pear. Moreover, the contents, density dynamics, and aggregation traits of stone cells of the interspecific hybrid JT8 were derived from the male parent (TL). Transgressive segregation was likely exhibited in the content of stone cells and the size of the SCCs. More specifically, the content of stone cells reached 1.61% (w/w). In extreme cases, SCCs of JT8 exceeded 1,000 µm in length and 500 µm in width. This demonstrated that stone cell traits could be transmitted from parent to progeny through interspecific hybridization. The density dynamics of stone cells in two loquat cultivars with different storage and transport tolerances were also investigated, which indicated that the cultivar with more stone cells was more tolerant to storage and transport. We suggest that wild loquat genetic resources containing stone cells in Eriobotrya plants can be used to gradually improve the storage and transport tolerance of loquat fruits.

5.
Environ Pollut ; 268(Pt B): 115676, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038572

RESUMO

Little is known about interactive effects of pH-aluminum (Al) on reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms in plants. Citrus sinensis seedlings were fertilized with nutrient solution at an Al concentration of 1 or 0 mM and a pH of 4.0, 3.5, 3.0 or 2.5 for 18 weeks. Thereafter, gas exchange and chlorophylls in leaves, H2O2 generation, electrolyte leakage, total soluble proteins, MG, malondialdehyde (MDA), antioxidants, sulfur-containing compounds, enzymes [viz., antioxidant enzymes, sulfur metabolism-related enzymes, ascorbate oxidase, phosphomannose isomerase, glyoxalase I and glyoxalase II] involved in ROS and MG detoxification in leaves and roots were measured. Effects of low pH and Al-toxicity on these parameters displayed obvious synergism. Without Al-toxicity, low pH increased H2O2 production, electrolyte leakage, MDA and MG concentrations by 45.7%-90.3% (52.4%-73.6%), 24.3%-74.5% (26.7%-86.2%), 18.6%-44.8% (35.6%-53.7%) and 16.3%-47.1% (13.8%-51.7%) in leaves (roots) relative to pH 4, respectively; low pH-induced upregulation of enzymes involved in ROS and MG detoxification and sulfur-containing compounds in leaves and/or roots could not protect them against oxidative damage. At pH 2.5-3.0, Al-toxicity increased H2O2 production, electrolyte leakage, MDA and MG concentrations by 34.2%-35.5% (23.9%-72.7%), 10.2%-29.5% (23.7%-56.8%), 15.6%-35.7% (27.5%-33.9%) and 21.5%-26.8% (21.0%-49.2%) in leaves (roots), respectively, and decreased total soluble protein concentration by 46.2%-47.4% (18.8%-20.8%) in leaves (roots); at pH 3.5-4.0, Al-toxicity did not affect significantly the five parameters in leaves and roots except for Al-induced increases in root MDA concentration at pH 3.5-4.0 and root electrolyte leakage at pH 3.5, and Al-induced decrease in root total soluble protein concentration at pH 4.0. Raised pH conferred the ability to maintain a balance between production and detoxification of ROS and MG in leaves and roots, thus protecting them against oxidative damage, and hence alleviating Al-induced increase in electrolyte leakage and decrease in total soluble protein level.


Assuntos
Citrus sinensis , Citrus , Alumínio/toxicidade , Antioxidantes , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Folhas de Planta , Raízes de Plantas , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio , Plântula
6.
Genes (Basel) ; 9(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563027

RESUMO

Cold storage is the primary preservation method of postharvest loquat fruits. However, cold storage also results in many chilling injury physiological disorders called lignification, which decreases the quality and economic value of the fruits. Few studies to date have focused on the transcriptomic responses associated with lignification except lignin synthesis pathways. This study aimed to explore the changes of loquat transcriptome during long-term cold storage. Our results showed that the gene expression patterns were differed among the five stages. The differentially expressed genes (DEGs) in response to cold storage were more intense and complex in earlier stage. The membrane-related genes preferentially responded to low temperature and were followed by intracellular-located genes. The cold-induced pathways were mainly concerned with signal transduction and secondary metabolism (i.e., lignin, pectin, cellulose, terpenoid, carotenoid, steroid) in the first three stages and were chiefly related to primary metabolism in the later two stages, especially energy metabolism. Further investigation suggested that 503 protein kinases, 106 protein phosphatases, and 40 Ca2+ signal components were involved in the cold signal transduction of postharvest loquat fruits. We predicted a pathway including 649 encoding genes of 49 enzymes, which displayed the metabolisms of major sugars and polysaccharides in cold-stored loquat fruits. The coordinated expression patterns of these genes might contribute to the changes of saccharides in the pathway. These results provide new insight into the transcriptomic changes of postharvest loquat fruits in response to cold storage environment, which may be helpful for improving the postharvest life of loquat in the future.

7.
Sheng Wu Gong Cheng Xue Bao ; 27(4): 572-8, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21847991

RESUMO

Construction and ethanol production effects of SNF4 gene knockout in Saccharomyces cerevisiae were described in this paper. For knockout of SNF4 gene in S. cerevisiae YS2, a PCR-amplified disruption cassette was used, encoding the short flanking homologous regions to the SNF4 gene and Kan(r) as selectable marker. The SNF4 gene disruption cassette was transformed into S. cerevisiae YS2 through LiAc/SS Carrier DNA/PEG. The positive transformants were grown on G418 plates and verified by PCR. The Kan(r) marker was rescued by transforming plasmid pSH65 into positive transformants and inducing expression of Cre recombinase in galactose-containing medium. Lastly, the YS2-deltaSNF4 strain, in which SNF4 allele gene were completely knocked out, was obtained by repeating the same procedure. The result of anaerobic fermentation showed that ethanol production of the SNF4 gene knockout strain had increased by 7.57 percent as compared with the original strain YS2. The experiment indicated ethanol production could be improved significantly with the approach ofSNF4 gene knockout by Cre-LoxP system.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Técnicas de Inativação de Genes/métodos , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Etanol/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA