Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202319480, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38317379

RESUMO

Controlled synthesis of lead-halide perovskite crystals is challenging yet attractive because of the pivotal role played by the crystal structure and growth conditions in regulating their properties. This study introduces data-driven strategies for the controlled synthesis of oriented quasi-spherical CsPbBr3, alongside an investigation into the synthesis mechanism. High-throughput rapid characterization of absorption spectra and color under ultraviolet illumination was conducted using 23 possible ligands for the synthesis of CsPbBr3 crystals. The links between the absorption spectra slope (difference in the absorbance at 400 nm and 450 nm divided by a wavelength interval of 50 nm) and crystal size were determined through statistical analysis of more than 100 related publications. Big data analysis and machine learning were employed to investigate a total of 688 absorption spectra and 652 color values, revealing correlations between synthesis parameters and properties. Ex situ characterization confirmed successful synthesis of oriented quasi-spherical CsPbBr3 perovskites using polyvinylpyrrolidone and Acacia. Density functional theory calculations highlighted strong adsorption of Acacia on the (110) facet of CsPbBr3. Optical properties of the oriented quasi-spherical perovskites prepared with these data-driven strategies were significantly improved. This study demonstrates that data-driven controlled synthesis facilitates morphology-controlled perovskites with excellent optical properties.

2.
J Med Chem ; 58(3): 1254-67, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25602762

RESUMO

Quinoxalin-2(1H)-one based design and synthesis produced several series of aldose reductase (ALR2) inhibitor candidates. In particular, phenolic structure was installed in the compounds for the combination of antioxidant activity and strengthening the ability to fight against diabetic complications. Most of the series 6 showed potent and selective effects on ALR2 inhibition with IC50 values in the range of 0.032-0.468 µM, and 2-(3-(2,4-dihydroxyphenyl)-7-fluoro-2-oxoquinoxalin-1(2H)-yl)acetic acid (6e) was the most active. More significantly, most of the series 8 revealed not only good activity in the ALR2 inhibition but also potent antioxidant activity, and 2-(3-(3-methoxy-4-hydroxystyryl)-2-oxoquinoxalin-1(2H)-yl)acetic acid (8d) was even as strong as the well-known antioxidant Trolox at a concentration of 100 µM, verifying the C3 p-hydroxystyryl side chain as the key structure for alleviating oxidative stress. These results therefore suggest an achievement of multifunctional ALR2 inhibitors having both potency for ALR2 inhibition and as antioxidants.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Quinoxalinas/farmacologia , Aldeído Redutase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
3.
ChemMedChem ; 8(12): 1913-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115741

RESUMO

ARIs for diabetes: A series of 2-(3-benzyl-2-oxoquinoxalin-1(2H)-yl)acetic acid derivatives were designed and synthesized as inhibitors of aldose reductase (AR), a novel target for the treatment of diabetes complications. Most of the derivatives proved to be potent and selective, with IC50 values in the low nanomolar to micromolar range.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Quinoxalinas/química , Aldeído Redutase/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Quinoxalinas/síntese química , Quinoxalinas/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
4.
ChemMedChem ; 7(5): 823-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22416050

RESUMO

A novel and facile synthesis of quinoxalinone derivatives was developed in which a wide range of 3-chloroquinoxalin-2(1H)-ones as key intermediates can be generated chemo- and regioselectively in good yields from corresponding quinoxaline-2,3(1H,4H)-diones. This new protocol is arguably superior, as it allows the design and preparation of a variety of bioactive quinoxaline-based compounds, which are particularly effective in the treatment of diabetes and its complications. Through this procedure, a new class of quinoxalinone-based aldose reductase inhibitors were synthesized successfully. Most of the inhibitors, with an N1-acetic acid head group and a substituted C3-phenoxy side chain, proved to be potent and selective. Their IC(50) values ranged from 11.4 to 74.8 nM. Among them, 2-(3-(4-bromophenoxy)-7-fluoro-2-oxoquinoxalin-1(2H)-yl)acetic acid and 2-(6-bromo-3-(4-bromophenoxy)-2-oxoquinoxalin-1(2H)-yl)acetic acid were the most active. Structure-activity relationship and molecular docking studies highlighted the importance of the ether spacer in the C3-phenoxy side chains, and provided clear guidance on the contribution of substitutions both at the core structure and the side chain to activity.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Desenho de Fármacos , Quinoxalinas/síntese química , Aldeído Redutase/química , Animais , Domínio Catalítico , Diabetes Mellitus/tratamento farmacológico , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/química , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...