Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38943249

RESUMO

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos HLA-E , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Deleção de Genes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Citotoxicidade Imunológica
2.
Adv Sci (Weinh) ; 11(18): e2307630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441389

RESUMO

Regulation of excessive inflammation and impaired cell proliferation is crucial for healing diabetic wounds. Although plant-to-mammalian regulation offers effective approaches for chronic wound management, the development of a potent plant-based therapeutic presents challenges. This study aims to validate the efficacy of turmeric-derived nanoparticles (TDNPs) loaded with natural bioactive compounds. TDNPs can alleviate oxidative stress, promote fibroblast proliferation and migration, and reprogram macrophage polarization. Restoration of the fibroblast-macrophage communication network by TDNPs stimulates cellular regeneration, in turn enhancing diabetic wound healing. To address diabetic wound management, TDNPs are loaded in an ultralight-weight, high swelling ratio, breathable aerogel (AG) constructed with cellulose nanofibers and sodium alginate backbones to obtain TDNPs@AG (TAG). TAG features wound shape-customized accessibility, water-adaptable tissue adhesiveness, and capacity for sustained release of TDNPs, exhibiting outstanding performance in facilitating in vivo diabetic wound healing. This study highlights the potential of TDNPs in regenerative medicine and their applicability as a promising solution for wound healing in clinical settings.


Assuntos
Curcuma , Diabetes Mellitus Experimental , Nanopartículas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Curcuma/química , Camundongos , Modelos Animais de Doenças , Proliferação de Células/efeitos dos fármacos , Géis , Ratos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
3.
ACS Nano ; 17(14): 13211-13223, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440429

RESUMO

Starvation therapy has been considered a promising strategy in cancer treatment for altering the tumor microenvironment (TME) and causing a cascade of therapeutic effects. However, it is still highly challenging to establish a therapeutic strategy for precisely and potently depriving tumoral nutrition. In this study, a glucose oxidase (GOx) and thrombin-incorporated erythrocyte vesicle (EV) with cyclic (Arg-Gly-Asp) (cRGD) peptide modification, denoted as EV@RGT, were synthesized for precisely depriving tumoral nutrition and sequentially inducing second near-infrared region (NIR-II) photothermal therapy (PTT) and immune activation. The EV@RGT could specifically accumulate at the tumor site and release the enzymes at the acidic TME. The combination of GOx and thrombin exhausts tumoral glucose and blocks the nutrition supply at the same time, resulting in severe energy deficiency and reactive oxygen species (ROS) enrichment within tumor cells. Subsequently, the abundant clotted erythrocytes in tumor vessels present outstanding localized NIR-II PTT for cancer eradication owing to the hemoglobin. Furthermore, the abundant ROS generated by enhanced starvation therapy repolarizes resident macrophages into the antitumor M1 phenotype via a DNA damage-induced STING/NF-κB pathway, ultimately contributing to tumor elimination. Consequently, the engineered EV@RGT demonstrates powerful antitumor efficiency based on precise nutrition deprivation, sequential NIR-II PTT, and immune activation effect. This work provides an effective strategy for the antitumor application of enzyme-based reinforced starvation therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Espécies Reativas de Oxigênio , Trombina , Nutrientes , Eritrócitos , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
4.
ACS Nano ; 17(12): 11253-11267, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314783

RESUMO

Developing an effective dressing against bacterial infection and synchronously addressing wound complications, such as bleeding, long-term inflammation, and reinfection, are highly desirable in clinical practice. In this work, a second near-infrared (NIR-II) responsive nanohybrid consisting of imipenem encapsulated liposome with gold-shell and lipopolysaccharide (LPS)-targeting aptamer, namely ILGA, is constructed for bacteria elimination. Benefiting from the delicate structure, ILGA exhibits strong affinity and a reliable photothermal/antibiotic therapeutic effect toward multidrug-resistant Pseudomonas aeruginosa (MDR-PA). Furthermore, by incorporating ILGA with a thermosensitive hydrogel poly(lactic-co-glycolic acid)-polyethylene glycol-poly(lactic-co-glycolic acid) (PLGA-PEG-PLGA), a sprayable dressing ILGA@Gel was prepared, which enables a quick on-demand gelation (10 s) for wound hemostasis and offers excellent photothermal/antibiotic efficacy to sterilize the infected wound. Additionally, ILGA@Gel provides satisfactory wound-healing environments by reeducating wound-associated macrophages for inflammation alleviation and forming a gel layer to block exogenous bacterial reinfection. This biomimetic hydrogel reveals excellent bacteria eradication and wound recovery effectiveness, demonstrating its promising potential for managing complicated infected wounds.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Reinfecção , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Bactérias , Inflamação , Infecção dos Ferimentos/tratamento farmacológico
5.
J Mol Graph Model ; 116: 108227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35671570

RESUMO

Glucose transporter 1 (GLUT1) is responsible for basal glucose uptake and is expressed in most tissues under normal conditions. GLUT1 mutations can cause early-onset absence epilepsy and myoclonus dystonia syndrome (MDS), with MDS potentially lethal. In this study, the effect of the R126C mutation, which is associated with MDS, on structural stability and substrate transport of GLUT1 was investigated. Various bioinformatics tools were used to predict the stability of GLUT1, revealing that the R126C mutation reduces the structural stability of GLUT1. Molecular dynamics (MD) simulations were used to further characterize the effect of the R126C mutation on GLUT1 structural stability. Based on the MD simulations, specific conformational changes and dominant motions of the GLUT1 mutant were characterized by Principal component analysis (PCA). The mutation disrupts hydrogen bonds between substrate-binding residues and glucose, thus likely reducing substrate affinity. The R126C mutation reduces the conformational stability of the protein, and fewer intramolecular hydrogen bonds were present in the mutated GLUT1 when compared with that of wild-type GLUT1. The mutation increased the free energy of glucose transport through GLUT1 significantly, especially at the mutation site, indicating that passage of glucose through the channel is hindered, and this mutant may even release cytoplasmic glucose. This study provides a detailed atomic-level explanation for the reduced structural stability and substrate transport capacity of a GLUT1 mutant. The results aid our understanding of the structure of GLUT1 and provide a framework for developing drugs to treat GLUT1-related diseases, such as MDS.


Assuntos
Glucose , Simulação de Dinâmica Molecular , Transporte Biológico , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Mutação
6.
Cancer Control ; 28: 1073274821989314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33618536

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA), the second most common type of primary liver tumor, has an increasing incidence in the past few decades. iCCA is highly malignant, with a 5-year survival rate of approximately 5-10%. Surgical resection is usually the prescribed treatment for patients with early stage iCCA; however, patients are usually in an advanced stage iCCA upon diagnosis. Currently, targeted therapy combined with chemotherapy and other comprehensive treatment measures have been mainly adopted as palliative treatment measures. As a common candidate of targeted therapy, FGFR inhibitors have demonstrated their unique advantages in clinical trials. At present, the prospect of FGFR targeted therapy is encouraging. The landscape of FGFR inhibitors in iCCA is needed to be showed urgently. METHODS: We searched relative reports of clinical trials on FGFR inhibitors in PubMed as well as Web of Science. We also concluded other available clinical trials of FGFR inhibitors (Data were collected from clinicaltrials.gov). RESULTS: Several relatively effective targeted drugs are being used in clinical trials. Some preliminary results indicate the outlook of targeted therapy such as BGJ398, TAS120, and HSP90 inhibitors. CONCLUSIONS: In summary, FGFR targeted therapy has broad prospects for the treatment of iCCA.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Humanos
7.
Clin Chim Acta ; 500: 149-154, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672633

RESUMO

BACKGROUND: The albumin to fibrinogen ratio (AFR) and the C-reactive protein to albumin ratio (CAR) have been served as inflammatory markers. However, their roles in RA remain unclear. We investigated the association of AFR/CAR with the concentration of autoantibodies and Th17 cells in RA. METHODS: A total of 196 RA patients, 200 patients with systemic lupus erythematosus (SLE), and 200 healthy donors (HD) who were admitted to the First Affiliated Hospital of Fujian Medical University were enrolled. The results of FIB, ALB, CRP, anti-cyclic citrullinated peptide antibodies (anti-CCP), rheumatoid factor (RF) and erythrocyte sedimentation rate (ESR) from RA patients and SLE patients were retrospectively analyzed. The percentage of Th17 cells in peripheral blood of RA patients was detected by flow cytometry, and the relative expression of TNF-α, IL-6 and IL-17A was detected by RT-qPCR. Correlation analysis of AFR/CAR and Th17 cells, CRP, ESR, TNF-α, IL-6 and IL-17A in RA was conducted. RESULTS: Compared with SLE patients and healthy donors (HD), AFR concentration was significantly lower (P < 0.01) in RA patients, while CAR concentration was significantly increased (P < 0.01) in RA patients. AFR showed negative correlation with CRP (r = -0.7103), ESR (r = -0.6542), RF (-0.2219), Th17 cells (r = -0.5952) and IL-17A (r = -0.4681). CAR was positively correlated with CRP (r = 0.9899), ESR (r = 0.605), RF (0.1867), Th17 cells (r = 0.6818), TNF-α (r = 0.3388), and IL-17A (r = 0.2046). CONCLUSIONS: The concentration of AFR in RA patients was reduced, while CAR concentration was increased. AFR and CAR are associated with CRP, ESR, RF, and Th17 cell ratios in RA patients, which can be used as potential indicators for determining RA inflammation.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Proteína C-Reativa/metabolismo , Fibrinogênio/metabolismo , Albumina Sérica Humana/metabolismo , Células Th17/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA