Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480290

RESUMO

Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S-nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.


Assuntos
Isquemia Miocárdica , Tiorredoxinas , Animais , Camundongos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Cisteína/metabolismo , Dissulfetos , Isquemia Miocárdica/genética , Oxirredução , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Redox Biol ; 55: 102425, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961098

RESUMO

Soluble guanylyl cyclase (GC1) is an α/ß heterodimer producing cGMP when stimulated by nitric oxide (NO). The NO-GC1-cGMP pathway is essential for cardiovascular homeostasis but is disrupted by oxidative stress, which causes GC1 desensitization to NO by heme oxidation and S-nitrosation (SNO) of specific cysteines. We discovered that under these conditions, GC1-α subunit increases cellular S-nitrosation via transfer of nitrosothiols to other proteins (transnitrosation) in cardiac and smooth muscle cells. One of the GC1 SNO-targets was the oxidized form of Thioredoxin1 (oTrx1), which is unidirectionally transnitrosated by GC1 with αC610 as a SNO-donor. Because oTrx1 itself drives transnitrosation, we sought and identified SNO-proteins targeted by both GC1 and Trx1. We found that transnitrosation of the small GTPase RhoA by SNO-GC1 requires oTrx1 as a nitrosothiol relay, suggesting a SNO-GC1→oTrx1→RhoA cascade. The RhoA signaling pathway, which is antagonized by the canonical NO-cGMP pathway, was alternatively inhibited by GC1-α-dependent S-nitrosation under oxidative conditions. We propose that SNO-GC1, via transnitrosation, mediates adaptive responses triggered by oxidation of the canonical NO-cGMP pathway.

3.
Methods Mol Biol ; 1747: 253-266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600465

RESUMO

S-Nitrosation is a key posttranslational modification in regulating proteins in both normal physiology and diverse human diseases. To identify novel therapies for human diseases linked to oxidative and nitrosative stress, understanding how cells control S-nitrosation specificity could be critical. Among the enzymes known to control S-nitrosation of proteins, thioredoxin 1 (Trx1), a conserved disulfide reductase, transnitrosates and denitrosates distinct sets of target proteins. To recognize the function of Trx1 in both normal and dysfunctional cells, S-nitrosation targets of Trx1 in different cells need to be identified. However, S-nitrosation is usually too labile to be detected directly by mass spectrometry (MS). Here we present two optimized MS techniques to identify S-nitrosated Trx1 and its transnitrosation targets, using both direct and indirect MS methods.


Assuntos
Biotina , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Tiorredoxinas/metabolismo , Biotina/química , Biotinilação , Humanos , Nitrosação , Oxirredução , Proteínas Recombinantes , Tiorredoxinas/química
4.
Methods Mol Biol ; 1788: 243-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28994031

RESUMO

Differential proteomic analysis (comparative quantitative proteomics) is a robust quantitative technique used to detect and identify the proteome of selected tissues. The expression levels (upregulated vs. downregulated) of proteins in tissue samples that differ by experimental design or anatomic location are determined by a series of assays including (1) 2D difference gel electrophoresis (2D-DiGE), (2) protein spot picking based on a priori thresholds, (3) Mass Spectrometry, and (4) follow-up Western Blot for antibody validation (Chen et al., Mol Cell Proteomics 14:2466-2478, 2015). Differential proteomic analysis is a perfect method for analyzing a heterogeneous tissue such as adipose tissue with a composition spectrum consisting of white to brown adipocytes along with a stromal vascular fraction dependent on anatomical location and inflammation. The adipose tissue proteomic protocol outlined here was successful in identifying differentially expressed proteins both significantly upregulated and downregulated between the experimental and control groups (Shields et al., Pulm Circ 6:586-596, 2016).


Assuntos
Tecido Adiposo/química , Proteoma/análise , Proteômica/métodos , Animais , Western Blotting/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos
5.
J Biol Chem ; 292(35): 14362-14370, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659344

RESUMO

Nitric oxide (NO) modulates many physiological events through production of cGMP from its receptor, the NO-sensitive guanylyl cyclase (GC1). NO also appears to function in a cGMP-independent manner, via S-nitrosation (SNO), a redox-based modification of cysteine thiols. Previously, we have shown that S-nitrosated GC1 (SNO-GC1) is desensitized to NO stimulation following prolonged NO exposure or under oxidative/nitrosative stress. In animal models of nitrate tolerance and angiotensin II-induced hypertension, decreased vasodilation in response to NO correlates with GC1 thiol oxidation, but the physiological mechanism that resensitizes GC1 to NO and restores basal activity is unknown. Because GC1 interacts with the oxidoreductase protein-disulfide isomerase, we hypothesized that thioredoxin-1 (Trx1), a cytosolic oxidoreductase, could be involved in restoring GC1 basal activity and NO sensitivity because the Trx/thioredoxin reductase (TrxR) system maintains thiol redox homeostasis. Here, by manipulating activity and levels of the Trx1/TrxR system and by using a Trx1-Trap assay, we demonstrate that Trx1 modulates cGMP synthesis through an association between Trx1 and GC1 via a mixed disulfide. A proximity ligation assay confirmed the endogenous Trx1-GC1 complex in cells. Mutational analysis suggested that Cys609 in GC1 is involved in the Trx1-GC1 association and modulation of GC1 activity. Functionally, we established that Trx1 protects GC1 from S-nitrosocysteine-induced desensitization. A computational model of Trx1-GC1 interaction illustrates a possible mechanism for Trx1 to maintain basal GC1 activity and prevent/rescue GC1 desensitization to NO. The etiology of some oxidative vascular diseases may very well be explained by the dysfunction of the Trx1-GC1 association.


Assuntos
Gasotransmissores/metabolismo , Modelos Moleculares , Miócitos Cardíacos/enzimologia , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Tiorredoxinas/metabolismo , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Células COS , Domínio Catalítico , Células Cultivadas , Chlorocebus aethiops , Cisteína/química , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos Wistar , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/genética , Tiorredoxinas/química , Tiorredoxinas/genética
6.
Hum Gene Ther ; 28(8): 681-689, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28530128

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease that culminates in right heart failure and death. Prostacyclin (PGI2) and its derivatives are effective treatments for PAH when administered as continuous parenteral infusions. This treatment paradigm requires medical sophistication, and patients are at risk for complications from an indewelling catheter; drug interruptions may result in rebound pulmonary hypertension and death. We hypothesized that the salivary gland can be repurposed into an endogenous production site for circulating PGI2 through the expression of a fusion protein embodying cyclooxygenase-1 (Cox1) and prostacyclin synthase (PGIS) domains. We utilized ultrasound-assisted gene transfer, a nonviral gene transfer strategy that achieves robust gene transfer to the salivary gland. We initially found that Cox1-PGIS expression in livers of mice using an adenoviral vector dramatically increased circulating PGI2 relative to untreated rats or rats treated with PGIS alone. We then utilized ultrasound-assisted gene transfer to express Cox1-PGIS in the submandibular glands of rats and showed a significant elevation of circulating PGI2 that corresponded to approximately 30% of that seen in humans undergoing intravenous infusion therapy for PAH. These results suggest the feasibility of gene therapy to drive endogenous biosynthesis of PGI2 as a therapeutic strategy for the treatment of PAH.


Assuntos
Ciclo-Oxigenase 1/genética , Epoprostenol/genética , Expressão Gênica , Técnicas de Transferência de Genes , Proteínas Recombinantes de Fusão/genética , Glândulas Salivares/metabolismo , Adenoviridae/genética , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Ratos , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/metabolismo , Glândula Submandibular/metabolismo , Fatores de Tempo , Transcrição Gênica
7.
Free Radic Biol Med ; 108: 785-792, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450148

RESUMO

Peroxiredoxin 1 (Prx1) is an essential peroxidase that reduces cellular peroxides. It holds 2 indispensable cysteines for its activity: a peroxidatic cysteine (CP) for peroxide reduction and a resolving cysteine (CR) for CP regeneration. CP can be readily sulfonated to CP-SO3H by protracted oxidative stress, which inactivates Prx1 as a peroxidase. By comparison, sulfonation of CR to CR-SO3H in mammalian cells has only been reported once. The rare report of CR sulfonation prompts the following questions: "can CR-SO3H be detected more readily with the current high sensitivity mass spectrometers (MS)?" and "do CP and CR have distinct propensities to sulfonation?" Answers to these questions could shed light on how differential sulfonation of CP and CR regulates Prx1 functions in cells. We used a sensitive Orbitrap MS to analyze both basal and H2O2-induced sulfonation of CR and CP in either recombinant human Prx1 (rPrx1) or HeLa cell Prx1 (cPrx1). In the Orbitrap MS, we optimized both collision-induced dissociation and higher-energy collisional dissociation methods to improve the analytical sensitivity of cysteine sulfonation. In the basal states without added H2O2, both CP and CR were partially sulfonated in either rPrx1 or cPrx1. Still, exogenous H2O2 heightened the sulfonation levels of both CP and CR by ~200-700%. Titration with H2O2 revealed that CP and CR possessed distinct propensities to sulfonation. This surprising discovery of prevalent Prx1 CR sulfonation affords a motivation for future investigation of its precise functions in cellular stress response.


Assuntos
Cisteína/análogos & derivados , Cisteína/química , Espectrometria de Massas/métodos , Peroxirredoxinas/metabolismo , Animais , Cisteína/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Mamíferos , Oxirredução , Estresse Oxidativo , Engenharia de Proteínas
8.
J Proteomics ; 138: 40-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26917471

RESUMO

Soluble Guanylyl Cyclase (sGC) is the main receptor for nitric oxide (NO). NO activates sGC to synthesize cGMP, triggering a plethora of signals. Recently, we discovered that NO covalently modifies select sGC cysteines via a post-translational modification termed S-nitrosation or S-nitrosylation. Earlier characterization was conducted on a purified sGC treated with S-nitrosoglutathione, and identified three S-nitrosated cysteines (SNO-Cys). Here we describe a more biologically relevant mapping of sGC SNO-Cys in cells to better understand the multi-faceted interactions between SNO and sGC. Since SNO-Cys are labile during LC/MS/MS, MS analysis of nitrosation typically occurs after a biotin switch reaction, in which a SNO-Cys is converted to a biotin-Cys. Here we report the identification of ten sGC SNO-Cys in rat neonatal cardiomyocytes using an Orbitrap MS. A majority of the SNO-Cys identified is located at the solvent-exposed surface of the sGC, and half of them in the conserved catalytic domain, suggesting biological significance. These findings provide a solid basis for future studies of the regulations and functions of diverse sGC S-nitrosation events in cells.


Assuntos
Miócitos Cardíacos/enzimologia , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Miócitos Cardíacos/citologia , Óxido Nítrico/química , Nitrosação , Ratos , Ratos Wistar , S-Nitrosoglutationa/química , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Guanilil Ciclase Solúvel/química
9.
Pulm Circ ; 6(4): 551-556, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090298

RESUMO

We have previously reported that pulmonary artery endothelial cells (PAECs) can be harvested from the tips of discarded Swan-Ganz catheters after right heart catheterization (RHC). In this study, we tested the hypothesis that the existence of an antiapoptotic phenotype in PAECs obtained during RHC is a distinctive feature of pulmonary arterial hypertension (PAH; World Health Organization group 1) and might be used to differentiate PAH from other etiologies of pulmonary hypertension. Specifically, we developed a flow cytometry-based measure of Bcl-2 activity, referred to as the normalized endothelial Bcl-2 index (NEBI). We report that higher NEBI values are associated with PAH to the exclusion of heart failure with preserved ejection fraction (HFpEF) and that this simple diagnostic measurement is capable of differentiating PAH from HFpEF without presenting addition risk to the patient. If validated in a larger, multicenter study, the NEBI has the potential to assist physicians in the selection of appropriate therapeutic interventions in the common and dangerous scenario wherein patients present a clinical and hemodynamic phenotype that makes it difficult to confidently differentiate between PAH and HFpEF.

10.
Pulm Circ ; 6(4): 586-596, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090302

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disease characterized by significant vascular remodeling. The obesity epidemic has produced great interest in the relationship between small visceral adipose tissue depots producing localized inflammatory conditions, which may link metabolism, innate immunity, and vascular remodeling. This study used novel micro computed tomography (microCT) three-dimensional modeling to investigate the degree of remodeling of the lung vasculature and differential proteomics to determine small visceral adipose dysfunction in rats with severe PAH. Sprague-Dawley rats were subjected to a subcutaneous injection of vascular endothelial growth factor receptor blocker (Sugen 5416) with subsequent hypoxia exposure for 3 weeks (SU/hyp). At 12 weeks after hypoxia, microCT analysis showed a decrease in the ratio of vascular to total tissue volume within the SU/hyp group (mean ± standard deviation: 0.27 ± 0.066; P = 0.02) with increased vascular separation (0.37 ± 0.062 mm; P = 0.02) when compared with the control (0.34 ± 0.084 and 0.30 ± 0.072 mm). Differential proteomics detected an up-regulation of complement protein 3 (C3; SU/hyp∶control ratio = 2.86) and the adipose tissue-specific fatty acid binding protein-4 (FABP4, 2.66) in the heart adipose of the SU/hyp. Significant remodeling of the lung vasculature validates the efficacy of the SU/hyp rat for modeling human PAH. The upregulation of C3 and FABP4 within the heart adipose implicates small visceral adipose dysfunction. C3 has been associated with vascular stiffness, and FABP4 suppresses peroxisome proliferator-activated receptor, which is a major regulator of adipose function and known to be downregulated in PAH. These findings reveal that small visceral adipose tissue within the SU/hyp model provides mechanistic links for vascular remodeling and adipose dysfunction in the pathophysiology of PAH.

11.
Biochim Biophys Acta ; 1854(12): 1816-1822, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410624

RESUMO

Thioredoxin 1 (Trx1) is а antioxidant protein that regulates protein disulfide bond reduction, transnitrosylation, denitrosylation and other redox post-translational modifications. In order to better understand how Trx1 modulates downstream protective cellular signaling events following cardiac ischemia, we conducted an expression proteomics study of left ventricles (LVs) after thoracic aortic constriction stress treatment of transgenic mice with cardiac-specific over-expression of Trx1, an animal model that has been proven to withstand more stress than its non-transgenic littermates. Although previous redox post-translational modifications proteomics studies found that several cellular protein networks are regulated by Trx1-mediated disulfide reduction and transnitrosylation, we found that Trx1 regulates the expression of a limited number of proteins. Among the proteins found to be upregulated in this study was SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues and an important regulator of cardiac development. The observation of SMYD1 induction by Trx1 following thoracic aortic constriction stress is consistent with the retrograde fetal gene cardiac protection hypothesis. The results presented here suggest for the first time that, in addition to being a master redox regulator of protein disulfide bonds and nitrosation, Trx1 may also modulate lysine methylation, a non-redox post-translational modification, via the regulation of SMYD1 expression. Such crosstalk between redox signaling and a non-redox PTM regulation may provide novel insights into the functions of Trx1 that are independent from its immediate function as a protein reductase.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Lisina/metabolismo , Proteínas Musculares/fisiologia , Tiorredoxinas/fisiologia , Fatores de Transcrição/fisiologia , Regulação para Cima , Animais , Camundongos , Camundongos Transgênicos , Oxirredução
12.
Arthritis Res Ther ; 17: 198, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26245278

RESUMO

INTRODUCTION: IL-17 has a putative role in the pathophysiology of Sjogren's syndrome (SS) and has been shown to be upregulated in the salivary glands of affected individuals. Sequestration of IL-17 with Adenoviral-mediated gene therapy has previously shown a benefit upon the SS-like phenotype in the Aec1/Aec2 mouse model. We sought to understand the proteomic consequences of IL-17 sequestration in the salivary gland of this mouse model as a means of illuminating the role of IL-17 in SS-like disease. METHODS: Ultrasound-assisted gene transfer (UAGT) was utilized to express a fusion protein composed of the extracellular portion of the IL-17 receptor fused to fragment of crystallization (Fc) in the submandibular glands of Aec1/Aec2 mice at 8 weeks of age. After confirming expression of the fusion protein and local and systemic sequestration of IL-17, proteomic profiling was performed on submandibular glands of a treated cohort of Aec1/Aec2 animals relative to the background strain and sham-treated animals. RESULTS: The most notable proteomic signatures of IL-17 sequestration on SS-like disease-related proteins were Kallikrein-related peptidases, including the putative autoantigen Klk1b22. IL-17 sequestration also notably led to an isoelectric shift, but not a molecular weight shift, of Kallikrein-1, attributed to phosphorylation. CONCLUSION: Non-viral IL-17 sequestration gene therapy in the salivary gland is feasible and downregulates expression of a putative SS autoantigen in the Aec1/Aec2 mouse.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Interleucina-17 , Calicreínas/biossíntese , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/biossíntese , Regulação da Expressão Gênica , Interleucina-17/administração & dosagem , Interleucina-17/genética , Calicreínas/antagonistas & inibidores , Calicreínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Dados de Sequência Molecular , Glândulas Salivares/efeitos dos fármacos , Síndrome de Sjogren/genética , Síndrome de Sjogren/terapia
13.
Proteomes ; 3(2): 56-73, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26317069

RESUMO

The covalent addition of nitric oxide (NO•) onto cysteine thiols, or S-nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S-nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S-nitrosylation by the "biotin switch" assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137Cs γ rays. Analysis of modulated S-nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S-nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S-nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S-nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric oxide synthase signaling pathway was differentially modulated by low- and high-dose γ-irradiation.

14.
Mol Cell Proteomics ; 13(12): 3507-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231459

RESUMO

The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1-target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Cisteína/metabolismo , Neurônios/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , Cisteína/química , Citoplasma/metabolismo , Dissulfetos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Oxirredução , Mapeamento de Interação de Proteínas , Transdução de Sinais , Tiorredoxinas/genética , Fatores de Transcrição/genética , Transcrição Gênica
15.
Methods ; 62(2): 151-60, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23428400

RESUMO

Protein S-nitrosylation is a dynamic post-translational modification (PTM) of specific cysteines within a target protein. Both proteins and small molecules are known to regulate the attachment and removal of this PTM, and proteins exhibiting such a function are transnitrosylase or denitrosylase candidates. With the advent of the biotin switch technique coupled to high-throughput proteomics workflows, the identification and quantification of large numbers of S-nitrosylated proteins and peptides is now possible. Proper analysis and interpretation of high throughout and quantitative proteomics data will help identify specific transnitrosylase and denitrosylase target peptide sequences and contribute to an understanding of the function and regulation of specific S-nitrosylation events. Here we describe the application of a quantitative proteomics approach using isotope-coded affinity tags (ICAT) in the biotin switch approach for the identification of transnitrosylation and denitrosylation targets of thioredoxin 1, an enigmatic protein with both reported transnitrosylase and denitrosylase activities.


Assuntos
S-Nitrosotióis/química , Tiorredoxinas/química , Sequência de Aminoácidos , Biotinilação , Linhagem Celular Tumoral , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Humanos , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica , S-Nitrosotióis/metabolismo , Coloração e Rotulagem , Tiorredoxinas/metabolismo
16.
J Proteomics ; 74(11): 2498-509, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21704743

RESUMO

S-Nitrosylation is a reversible PTM for regulating protein function. Thioredoxin-1 (Trx1) catalyzes either transnitrosylation or denitrosylation of specific proteins, depending on the redox status of the cysteines within its conserved oxidoreductase CXXC motif. With a disulfide bond formed between the two catalytic cysteines, Trx1 is not only inactive as a denitrosylase, but it may also be nitrosylated at Cys73 and serve as a transnitrosylating agent. Identification of Trx1-mediated transnitrosylation or denitrosylation targets will contribute to a better understanding of Trx1's function. Previous experimental approaches based on the attenuation of CXXC oxidoreductase activity cannot readily distinguish Trx1 transnitrosylation targets from denitrosylation targets. In this study, we used the ICAT method in conjunction with the biotin switch technique to differentiate Trx1 transnitrosylation targets from denitrosylation target proteins from neuroblastoma cells. We demonstrate that the ICAT approach is effective for quantitative identification of putative Trx1 transnitrosylation and denitrosylation target peptides. From these analyses, we confirmed reports that peroxiredoxin 1 is a Trx1 transnitrosylation, but not a denitrosylation target, and we found several other proteins, including cyclophilin A to be modulated in this manner. Unexpectedly, we found that many nitrosylation sites are reversibly regulated by Trx1, suggesting a more prominent role for Trx1 in regulating S-nitrosylation.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia , Sequência de Aminoácidos , Domínio Catalítico , Células Cultivadas , Humanos , Marcação por Isótopo/métodos , Modelos Biológicos , Nitrosação/fisiologia , Oxirredução , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Antioxid Redox Signal ; 15(9): 2565-604, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21453190

RESUMO

Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Proteômica/métodos , Tiorredoxinas/metabolismo , Animais , Humanos , Proteínas/química
18.
Mol Cell Proteomics ; 9(10): 2262-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660346

RESUMO

Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining Casp3 nitrosylation specificity. However, the mechanisms that regulate Trx1 transnitrosylation and denitrosylation of specific targets are unresolved. Here we used an optimized mass spectrometric method to demonstrate that Trx1 is itself nitrosylated by S-nitrosoglutathione at Cys(73) only after the formation of a Cys(32)-Cys(35) disulfide bond upon which the disulfide reductase and denitrosylase activities of Trx1 are attenuated. Following nitrosylation, Trx1 subsequently transnitrosylates Casp3. Overexpression of Trx1(C32S/C35S) (a mutant Trx1 with both Cys(32) and Cys(35) replaced by serine to mimic the disulfide reductase-inactive Trx1) in HeLa cells promoted the nitrosylation of specific target proteins. Using a global proteomics approach, we identified 47 novel Trx1 transnitrosylation target protein candidates. From further bioinformatics analysis of this set of nitrosylated peptides, we identified consensus motifs that are likely to be the determinants of Trx1-mediated transnitrosylation specificity. Among these proteins, we confirmed that Trx1 directly transnitrosylates peroxiredoxin 1 at Cys(173) and Cys(83) and protects it from H(2)O(2)-induced overoxidation. Functionally, we found that Cys(73)-mediated Trx1 transnitrosylation of target proteins is important for protecting HeLa cells from apoptosis. These data demonstrate that the ability of Trx1 to transnitrosylate target proteins is regulated by a crucial stepwise oxidative and nitrosative modification of specific cysteines, suggesting that Trx1, as a master regulator of redox signaling, can modulate target proteins via alternating modalities of reduction and nitrosylation.


Assuntos
Compostos Nitrosos/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Espectrometria de Massas , Oxirredução
19.
Am J Physiol Cell Physiol ; 297(4): C928-34, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625613

RESUMO

Cytochrome c oxidase (COX) is composed of 13 subunits, of which COX I, II, and III are encoded by a mitochondrial gene. COX I and II function as the main catalytic components, but the function of COX III is unclear. Because myocardial ischemia affects mitochondrial oxidative metabolism, we hypothesized that COX activity and expression would be affected during postischemic cardiomyopathy. This hypothesis was tested in a monkey model following myocardial infarction (MI) and subsequent pacing-induced heart failure (HF). In this model, COX I protein expression was decreased threefold after MI and fourfold after HF (P < 0.05 vs. sham), whereas COX II expression remained unchanged. COX III protein expression increased 5-fold after MI and further increased 10-fold after HF compared with sham (P < 0.05 vs. sham). The physiological impact of COX III regulation was examined in vitro. Overexpression of COX III in mitochondria of HL-1 cells resulted in an 80% decrease in COX I, 60% decrease in global COX activity, 60% decrease in cell viability, and threefold increase in apoptosis (P < 0.05). Oxidative stress induced by H2O2 significantly (P < 0.05) increased COX III expression. H2O2 decreased cell viability by 47 +/- 3% upon overexpression of COX III, but only by 12 +/- 5% in control conditions (P < 0.05). We conclude that ischemic stress in vivo and oxidative stress in vitro lead to upregulation of COX III, followed by downregulation of COX I expression, impaired COX oxidative activity, and increased apoptosis. Therefore, upregulation of COX III may contribute to the increased susceptibility to apoptosis following MI and subsequent HF.


Assuntos
Apoptose/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Macaca fascicularis , Masculino , Camundongos , Mitocôndrias/fisiologia , Células Musculares/fisiologia , Infarto do Miocárdio/patologia , Estresse Oxidativo/fisiologia , Subunidades Proteicas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
20.
Mol Cell Proteomics ; 8(7): 1674-87, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19416943

RESUMO

Thioredoxin 1 (Trx1) is a key redox modulator that is functionally conserved across a wide range of species, including plants, bacteria, and mammals. Using a conserved CXXC motif, Trx1 catalyzes the reduction of cysteine disulfides and S-nitrosothiols. In contrast to small molecular reductants such as glutathione and cysteine that can reduce a wide range of oxidized proteins, Trx1 reduces only selected proteins via specific protein-protein interaction. Trx1 has been shown to regulate numerous signal transduction pathways, and its dysfunctions have been implicated in several diseases, including cancer, inflammation, and neurodegenerative and cardiovascular diseases. Identification of Trx1 target proteins may help to identify novel signaling mechanisms that are important for Trx1 antistress responses. In this study, we performed an ICAT proteomics study for the identification of Trx1 target proteins from the hearts of a cardiac specific Trx1-overexpressing transgenic mouse model (Tg-Trx1). Trx1-reduced proteins were distinguished from Trx1-induced proteins by comparison of the ICAT results with those obtained using a parallel iTRAQ (isobaric tags for relative and absolute quantitation) protein expression analysis. We were able to identify 78 putative Trx1 reductive sites in 55 proteins. Interestingly we identified a few protein functional networks that had not been shown previously to be regulated by Trx1, including the creatine-phosphocreatine shuttle, the mitochondrial permeability transition pore complex, and the cardiac contractile apparatus. The results presented here suggest that in addition to a general antioxidant function, Trx1 may be involved in the coordination of a wide array of cellular functions for maintaining proper cardiac energy dynamics and facilitating muscle contraction.


Assuntos
Espectrometria de Massas/métodos , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Metabolismo Energético , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Miocárdio/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxirredução , Estresse Oxidativo , Proteína Desglicase DJ-1 , Isoformas de Proteínas/genética , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...