Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144854, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486186

RESUMO

Restoration has been increasingly adopted to halt trends in coastal wetland loss globally. Existing restoration often assumes that once abiotic stress is relieved, disturbances are prevented, and invasive species are eradicated, coastal wetlands will recover if propagules of native species are supplied either through natural dispersal or planting. Whether other factors including consumers can help explain the often suboptimal performance of existing restoration remains poorly understood. In a series of field experiments in the Yangtze estuary, we examined the relative importance of abiotic stress and crab grazing in regulating the recovery of the native foundation plant species Scirpus mariqueter in salt marsh areas where exotic cordgrass was successfully eradicated. We found that grazing by herbivorous crabs, rather than abiotic stress, was the primary obstacle restricting the recovery of planted Scirpus. This negative effect of crab grazing varied predictably across elevation and was strongest at low elevations where abiotic conditions were positive for Scirpus. These findings highlight that i) measures to control crab grazing are needed to enhance the success of Scirpus restoration, even in areas where abiotic conditions are set to be optimal, and ii) restoration measures purely focused on reducing abiotic stress could be ineffective or suboptimal in field conditions, likely jeopardizing restoration investment and success. Since top-down control of foundation plant species is common in many coastal wetlands and can be especially important in degraded systems where herbivores are abundant, we urge that future coastal wetland restoration assesses for the impacts of grazers and, when present, apply intervention measures.


Assuntos
Braquiúros , Áreas Alagadas , Animais , Estuários , Herbivoria , Poaceae
2.
Chemosphere ; 252: 126471, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32220713

RESUMO

Cd and Zn pollution was observed to often occur simultaneously in soils. However, previous studies focused on single heavy metal instead of Cd and Zn combined pollution. Castor (Ricinus communis) is considered to have great potential for contaminated soil remediation. The resistance of castor seedlings to heavy metals and the mechanism behind it remain unknown. In this study, the tolerance and accumulation ability of castor seedlings to Cd and Zn were investigated, and the accumulation mechanism involving the subcellular distribution in different tissues was further explored. The results on biomass and chlorophyll revealed that castor seedlings have good tolerance to the pollution with 0-5 mg/kg Cd and 380 mg/kg Zn, while not to the heavy pollution with 25 mg/kg Cd and 380 mg/kg Zn. The maximum accumulation concentrations of Cd and Zn, 175.3 mg Cd/kg and 386.8 mg/kg Zn, appeared in castor seedling root instead of stem and leaf, indicating that root played a significant part in accumulating Zn and Cd. The relative low dosage of Cd (0-5 mg/kg) promoted the accumulation of Zn in the subcellular component, while high dosage (25 mg/kg) inhibited the accumulation of Zn. In subcellular accumulation and distribution of castor seedlings, Cd (27.1%-69.4%) and Zn (39.6%-66.6%) in the cell wall was the highest. With the increase of Cd addition, the accumulation of Cd increased in cell wall while decreased in organelle and soluble fraction. Hydroxyl, amino, amides and carboxyl functional groups on cell wall might provided the main binding sites for Cd and Zn.


Assuntos
Biodegradação Ambiental , Metais Pesados/metabolismo , Ricinus/fisiologia , Poluentes do Solo/metabolismo , Biomassa , Cádmio/análise , Óleo de Rícino , Tolerância a Medicamentos , Metais Pesados/análise , Folhas de Planta/metabolismo , Ricinus/metabolismo , Plântula/metabolismo , Solo/química , Poluentes do Solo/análise , Zinco/metabolismo
3.
Chemosphere ; 225: 775-784, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903851

RESUMO

Contamination with both oxytetracycline (OTC) and Cu is prevalent in water. OTC can chelate with Cu to form OTC + Cu composites. Through the study of the effects of the interaction of OTC and Cu on the algae Isochrysis galbana at multiple coordination ratios, it was found that the OTC + Cu complex was antagonistic to algae growth after 24 h of exposure but was synergistic in treatment (T) 3 and T4 after 48 and 72 h. Compared with OTC alone, the addition of Cu addition significantly inhibited the biosynthesis of chlorophyll a, but the ratio (R) in the OTC + Cu and OTC treatments gradually increased from T1 to T4. The addition of Cu also led to a significant increase in malondialdehyde and reactive oxygen species, but R gradually decreased and increased, respectively, from T1 to T4. The accumulation of OTC in algae was considerably promoted by the addition of Cu, with R increasing 1.5 in T2 to 2.6 in T4; moreover, the residue of OTC in water was reduced in the presence of algae. OTC alone dramatically inhibited the absorption of Cu by algae, while in the presence of OTC + Cu, only the two high-OTC treatments showed a significant decrease in Cu absorption. In addition, the absorption of Mg was markedly inhibited in all OTC treatments and the adsorption of K in the high-OTC treatment, but these inhibitory effects were alleviated in the OTC + Cu treatment. These results indicated that the effects of the OTC + Cu complex on algae were different from the effects of OTC and Cu alone.


Assuntos
Cobre/toxicidade , Microalgas/efeitos dos fármacos , Oxitetraciclina/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Clorofila A/biossíntese , Interações Medicamentosas , Haptófitas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fatores de Tempo
4.
Front Physiol ; 9: 811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061837

RESUMO

As an effective method of transgenesis, the plasmid of PiggyBac transposon containing GFP (PiggyBac) transposon system has been widely used in various organisms but not yet in mollusks. In this work, piggyBac containing green fluorescent protein (GFP) was transferred into the Pacific oyster (Crassostrea gigas) by sperm-mediated gene transfer with or without electroporation. Fluorescent larvae were then observed and isolated under an inverted fluorescence microscope, and insertion of piggyBac was tested by polymerase chain reaction (PCR) using genomic DNA as template. Oyster larvae with green fluorescence were observed after transgenesis with or without electroporation, but electroporation increased the efficiency of sperm-mediated transgenesis. Subsequently, the recombinant piggyBac plasmid containing gGH (piggyBac-gGH) containing GFP and a growth hormone gene from orange-spotted grouper (gGH) was transferred into oysters using sperm mediation with electroporation, and fluorescent larvae were observed and isolated. The insertion of piggyBac-gGH was tested by PCR and genome walking analysis. PCR analysis indicated that piggyBac-gGH was transferred into oyster larvae; genome walking analysis further showed the detailed location where piggyBac-gGH was inserted in the oyster genome. This is the first time that piggyBac transposon-mediated transgenesis has been applied in mollusks.

5.
Front Physiol ; 9: 221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615921

RESUMO

Light-sensitivity is important for mollusc survival, as it plays a vital role in reproduction and predator avoidance. Light-sensitivity has been demonstrated in the adult Pacific oyster Crassostrea gigas, but the genes associated with light-sensitivity remain unclear. In the present study, we designed experiments to identify the genes associated with light-sensitivity in adult oysters. First, we assessed the Pacific oyster genome and identified 368 genes annotated with the terms associated with light-sensitivity. Second, the function of the four rhodopsin-like superfamily member genes was tested by using RNAi. The results showed that the highest level of mRNA expression of the vision-related genes was in the mantle; however, this finding is not true for all oyster genes. Interestingly, we also found four rhodopsin-like superfamily member genes expressed at an very high level in the mantle tissue. In the RNAi experiment, when one of rhodopsin-like superfamily member genes (CGI_1001253) was inhibited, the light-sensitivity capacity of the injected oysters was significantly reduced, suggesting that CGI_10012534 may be associated with light-sensitivity in the adult Pacific oyster.

6.
PLoS One ; 10(10): e0140149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474058

RESUMO

Light-sensitivity is an important aspect of mollusk survival as it plays a vital role in reproduction and predator avoidance. In the Pacific oyster Crassostrea gigas light sensitivity has been demonstrated in the larval stage but has not yet been conclusively demonstrated in adult oysters. In this paper we describe an experiment which was undertaken to determine if adult Pacific oysters were sensitive to light. One LED flashlight was used to shine light onto adult oysters while they were filtering seawater through their shell openings. We found that the degree of opening increased gradually during the light period but rapidly decreased when the flashlight was turned off in the treated group but not in the control group. These results suggest that adult Pacific oyster may be sensitive to light.


Assuntos
Crassostrea/fisiologia , Luz , Fotoperíodo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...