Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 45: 68-73, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27262988

RESUMO

This study aimed to examine associations between urinary metal concentrations and sperm DNA damage. Thirteen metals [arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), molybdenum (Mo), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)] were detected in urine samples of 207 infertile men from an infertility clinic using inductively coupled plasma mass spectrometry, and also, sperm DNA damage (tail length, percent DNA tail, and tail distributed moment) were assessed using neutral comet assay. We found that urinary Hg and Ni were associated with increasing trends for tail length (both p for trend<0.05), and that urinary Mn was associated with increasing trend for tail distributed moment (p for trend=0.02). These associations did persist even when considering multiple metals. Our results suggest that environmental exposure to Hg, Mn, and Ni may be associated with increased sperm DNA damage.


Assuntos
Arsênio/urina , Dano ao DNA , Infertilidade Masculina/genética , Infertilidade Masculina/urina , Metais Pesados/urina , Espermatozoides/metabolismo , Adulto , Instituições de Assistência Ambulatorial , Ensaio Cometa , Monitoramento Ambiental , Humanos , Masculino
2.
Biomed Res Int ; 2015: 302653, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26649298

RESUMO

Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway. SH-SY5Y human neuroblastoma cells were exposed to various concentrations of PFOS to examine the role of the BDNF-ERK-CREB signalling pathway in PFOS-induced apoptosis and cytotoxicity. Furthermore, to ascertain the mechanism by which PFOS reduces BDNF signalling, we examined the expression levels of miR-16 and miR-22, which potentially regulate BDNF mRNA translation at the posttranscriptional level. Results indicated that PFOS significantly decreased cell viability and induced apoptosis in SH-SY5Y cells. In addition, BDNF and pERK protein levels decreased after PFOS treatment; however, pCREB protein levels were significantly elevated in PFOS treated groups. TrkB protein expression increased in the 10 µM and 50 µM PFOS groups and significantly decreased in the 100 µM PFOS group. Our results demonstrated that PFOS exposure decreased miR-16 expression and increased miR-22 expression, which may represent a possible mechanism by which PFOS decreases BDNF protein levels. PFOS may inhibit BDNF-ERK-CREB signalling by increasing miR-22 levels, which may, in part, explain the mechanism of PFOS neurotoxicity.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Fluorocarbonos/toxicidade , MicroRNAs/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Ácidos Alcanossulfônicos/metabolismo , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Fluorocarbonos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética
3.
Environ Toxicol ; 30(9): 1082-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24616003

RESUMO

Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart. The purpose of this study was to investigate the effect of PFOS on the apoptosis in developing heart and mitochondria-mediated apoptosis pathway. Pregnant Sprague-Dawley (SD) rats were exposed to PFOS at doses of 0.1, 0.6, and 2.0 mg/kg-d and 0.05% Tween 80 as control by gavage from gestation day 2 (GD 2) to GD 21. Apoptosis, as well as expression of apoptosis related genes associated with mitochondrial-mediated apoptosis pathway, including p53, bcl-2, bax, cytochrome c, caspase-9, and caspase-3 were analyzed in heart tissues from weaned (postnatal day 21, PND 21) offspring. The results showed that prenatal PFOS exposure resulted in apoptosis in the offspring's heart. The mRNA and protein expression levels of p53, bax, cytochrome c, caspase-9, and caspase-3 in the offspring's heart were enhanced in various PFOS-treated groups, meanwhile, the bcl-2 expression levels were decreased. Our results indicated that prenatal PFOS exposure induced the apoptosis of weaned offspring rat heart tissue via mitochondria-mediated apoptotic pathway.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Apoptose/efeitos dos fármacos , Fluorocarbonos/toxicidade , Coração/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Feminino , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Desmame , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...