Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109282, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383737

RESUMO

This paper provides experimental data on the temperature rise during granular flows in a small-scale rotating drum due to heat generation. All heat is believed to be generated by conversion of some mechanical energy, through mechanisms such as friction and collisions between particles and between particles and walls. Particles of different material types were used, while multiple rotation speeds were considered, and the drum was filled with different amounts of particles. The temperature of the granular materials inside the rotating drum was monitored using a thermal camera. The temperature increases at specific times of each experiment are presented in form of tables, along with the average and standard deviation of the repetitions of each setup configuration. The data can be used as a reference to set the operating conditions of rotating drums, in addition to calibrating numerical models and validating computer simulations.

2.
Int J Pharm ; 622: 121861, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35643345

RESUMO

Understanding die filling behaviour of powders is critical in developing optimal formulation and processes in various industries, such as pharmaceuticals and fine chemicals. In this paper, forced die filling is analysed using a graphics processing unit (GPU) based discrete element method (DEM), for which a powder feeder equipped with a wired stirrer is considered. The influences of operating parameters, such as the initial powder bed height, the filling speed, and the stirrer speed, on the die filling performance are systematically explored. It is shown that a larger initial powder bed height leads to a higher filling ratio, which can be attributed to a higher filling intensity; while the deposited particle mass in the die is almost independent of the powder bed height, when the initial fill level is larger than a critical bed height. Additionally, the filling ratio slightly increases with the increase of stirrer speed for cases with a stirrer, while the filling ratios are lower than that without a stirrer, which is attributed to the stirrer occupying some space above the die and reducing the effective discharge area. The obtained results can provide useful information for optimising the feeder system design and the operating condition.


Assuntos
Excipientes , Gravitação , Pós , Tecnologia Farmacêutica/métodos
3.
Int J Pharm ; 602: 120654, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915183

RESUMO

In the pharmaceutical industry, linear die filling is widely employed in R&D, while rotary die filling is very common in commercial production. It is not clear if powder die filling behaviour in a linear die filling system is representative of the flow performance in a rotary tablet press. In this study, a linear die filling system and a rotary die filling system were used to examine flow behaviours of both poor-flowing and free-flowing powders. It was found that the performance of poor-flowing powder in the linear die filling system is slightly better than that in the rotary die filling system, while the performance of free-flowing powders in the linear die filling system is similar to that in the rotary die filling system. Hence, it is suitable to use the linear die filling system to estimate the flow behaviour during rotary die filling with free-flowing powders, but caution needs to be taken when poor-flowing powders are used.


Assuntos
Celulose , Emolientes , Composição de Medicamentos , Fenômenos Físicos , Pós , Comprimidos , Tecnologia Farmacêutica
4.
Int J Pharm ; 597: 120273, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486022

RESUMO

Milling is commonly used for controlling the size distribution of granules in the pharmaceutical dry granulation process. A thorough understanding of the breakage of single compacts is crucial in unravelling the complex interactions that exist between different pharmaceutical feed materials and the mill process conditions. However, limited studies in the literature have examined the impact breakage of single pharmaceutical compacts. In this study, pharmaceutical powders including the microcrystalline MCC 101, MCC 102 and MCC DG were compressed at different pressures and tablets with different porosities and thicknesses were produced. Impact breakage tests were conducted in an air gun and the tablet impact velocities and breakage patterns were analysed using a Phantom ultrahigh-speed camera. It was observed that the tablet breakage rate and the amount of fines reduced as the tablet porosity decreased. In addition, thin tablets with low porosity exhibited semi-brittle fracture and less intense crack propagation while thick tablets with high porosity primarily disintegrated into fine fragments. Thus, this study provides a better understanding of the breakage behaviour of different pharmaceutical materials and can potentially be used to describe the breakage modes of compacts in the ribbon milling processes.


Assuntos
Comprimidos , Tamanho da Partícula , Porosidade , Pós , Pressão , Resistência à Tração
5.
Int J Pharm ; 590: 119954, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33039493

RESUMO

Dry granulation is commonly used in the pharmaceutical industry for compressing heat and moisture sensitive feed materials into compacts, subsequently followed by milling. Population balance models (PBMs) are often used to explore the effects of milling conditions on the granule size distribution (GSD) but limited studies have investigated the effects of the feed material and ribbon properties on the resulting GSD. In this work, a variety of feed materials and ribbons with different mechanical properties were used to validate a mass-based bi-modal breakage function developed in a previous study (Olaleye et al., 2019). Ribbon like tablets (referred to as ribblets) with a range of precisely controlled porosities were produced using an Instron machine and pharmaceutical excipients including the microcrystalline cellulose MCC 101, MCC DG and a DCPA/MCC mixture. Roll compacted ribbons were also produced using MCC 102 and MCC DG excipients. The ribblets and ribbons were milled in an impact-dominated cutting mill and PBM parameters were obtained from the ribblet milling data. Mechanistic models related to the feed ribbon property were then developed. It was found that the PBM with the mass-based bi-modal breakage function can accurately predict the GSDs of both the milled ribblets and roll compacted ribbons. The model developed was successfully linked to ribbon properties such as porosity for the first time and the model parameter a that reflects the fines mode in the bi-modal breakage function increased linearly with ribblet porosity. This work demonstrates the versatility of the developed PBM and provides a systematic approach for describing the ribbon milling process.


Assuntos
Excipientes , Tecnologia Farmacêutica , Composição de Medicamentos , Tamanho da Partícula , Porosidade , Comprimidos
6.
Data Brief ; 32: 106220, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32923542

RESUMO

As one of critical process steps during pharmaceutical tabletting, rotary die filling is still not well understood. To address this issue, a model rotary die filling system with a paddle feeder was developed to closely mimic the industrial process. Using this model system, the performance of various pharmaceutical powders at different turret and paddle speeds was evaluated, and the dependence of fill variation on process conditions and material properties was examined. A comprehensive dataset was created and reported here to show the effects of material and process parameters on the die filling performance and the filling consistency. It is believed that the data can also be used for data-driven process modelling and for developing robust machine learning models for pharmaceutical manufacturing.

7.
Int J Pharm ; 588: 119770, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805384

RESUMO

Dry granulation through roll compaction is a technology commonly used in the pharmaceutical industry for producing roll compacted ribbons. The significance of the feed screw speed and roll speed during ribbon production was highlighted in recent publications. However, previous studies focused primarily on the individual effects of either the feed screw speed or roll speed on ribbon porosity, and the synergetic effect of these parameters was rarely examined. The aim of this study therefore was to investigate the effects of the screw-to-roll speed ratio on the porosity of roll compacted ribbons, produced at different roll compaction conditions using the microcrystalline cellulose MCC, Avicel PH-102 feed material. It was observed that ribbon porosity decreased linearly with increasing screw-to-roll speed ratio. Furthermore, an increase in the speed ratio led to an increase in the roll gap and mass throughput while a decrease in the screw constant was observed. Thus, this study demonstrates that the screw-to-roll speed ratio can be treated as one of the critical process parameters for controlling ribbon porosity and can also be used to determine the optimum operating regimes during roll compaction.


Assuntos
Excipientes , Composição de Medicamentos , Tamanho da Partícula , Porosidade , Comprimidos
8.
Int J Pharm ; 585: 119547, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32569812

RESUMO

Rotary tabletting presses are widely used to produce tablets in the pharmaceutical industry. In the tabletting process using a rotary press, rotary die filling is one of critical process steps, as powder behaviour during die filling dictates the quality of final products, such as dosage and weight variations. It is hence of importance to understand powder flow behaviour during rotary die filling. The purpose of this study is to identify the critical process parameters and material attributes that determine the die filling performance. For this purpose, a model rotary die filling system with a paddle feeder was constructed to mimic the powder feeding process in a typical rotary press. Using this model system, the effects of powder properties, turret speed and paddle speed on die filling behaviour were investigated. Three grades of microcrystalline cellulose powders were considered. It was found that the turret speed has a more pivotal role in controlling the die filling performance than the paddle speed. In addition, it is demonstrated that powder flowability has a great impact on the fill weight variation, and a higher weight variation is induced for the powders with poorer flowability.


Assuntos
Celulose/química , Química Farmacêutica/métodos , Excipientes/química , Pós/química , Comprimidos/química
9.
Data Brief ; 29: 105269, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32095496

RESUMO

Ethyl cellulose (EC) based microparticles (MPs) could provide sustained release for Huperzine A. The drug release mechanism of MPs was exploited to achieve an ideal drug release profile. We previously found that the wettability of MPs greatly contributed to facilitating drug release, which was detailed in a research article entitled "Huperzine A loaded multiparticulate disintegrating tablet: Drug release mechanism of ethyl cellulose microparticles and pharmacokinetic study" (Peng et al., 2019) [1]. In this article, the influence of different polymers and drugs on the drug release behavior was investigated to broaden or compensate this finding. Besides, powder characterization of MPs was used to evaluate the further application of MPs for tablets.

10.
Int J Pharm ; 572: 118822, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678375

RESUMO

Roll compaction is a critical unit operation in the pharmaceutical manufacture. During roll compaction, a change in the internal energy of powder due to applying of external work from the rolls can generate heat and cause an increase in the temperature of the powder, which can subsequently affect the roll compaction behaviour and the quality of ribbons. Thus, it is crucial to understand the thermal response of pharmaceutical formulations during roll compaction. This study hence aims to examine the evolution of temperature and density in powders during roll compaction. For this purpose, a systematic experimental study is performed using the peripheral quantitative computed tomography (PQCT), for the first time, and the thermographic method to investigate the thermo-mechanical behaviour of pharmaceutical powders during roll compaction. A finite element model is also developed to describe the transformation of irreversible compression work to heat as well as the energy dissipation due to the wall friction, and to predict the thermomechanical behaviour. In particular, the effect of roll speeds on the thermomechanical behaviour of powders during roll compaction is examined. It was shown that at low roll speeds, the highest temperature is reached inside of the compacted powder. As the roll speed increases, more heat is generated on the ribbon surfaces due to the powder-wall friction, while the density of ribbon deceases. It was found that the density and the temperature at the ribbon centre, were generally higher than that near to the edge, for roll compaction with fixed cheek plates.


Assuntos
Química Farmacêutica , Excipientes/química , Modelos Teóricos , Preparações Farmacêuticas/química , Análise de Elementos Finitos , Pós , Temperatura , Tomografia Computadorizada por Raios X
11.
Int J Pharm ; 571: 118765, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31610282

RESUMO

Dry granulation through roll compaction followed by milling is a widely used pharmaceutical process. The material properties of powders and the roll compaction process conditions affect the strength of ribbons, and subsequently the granule size distribution (GSD). Accurate prediction of the granule size distribution from milling of ribbons with different properties is essential for ensuring tablet quality in the final compaction stage. In this study, MCC, PH-102 ribbons with precisely controlled porosities were produced and milled in a cutting mill and granule size distribution was analysed using QicPic. A population balance model with a new breakage function based on the Weibull function was developed to model the ribbon milling process. Eight model parameters were initially obtained for each ribbon porosity and very good agreement between the model and experimental results was obtained. Sensitivity analysis was then performed and thus reduced the number of model parameters that changed with ribbon porosity to two in the breakage function. The refined model was able to predict the granule size distribution both within and outside the experimental boundaries. It was shown that the model developed in this study has a great potential for predicting granule properties and therefore the optimisation of the dry granulation process.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Modelos Químicos , Comprimidos/química , Estudos de Viabilidade , Tamanho da Partícula , Porosidade , Pós , Resistência à Tração
12.
Phys Rev E ; 99(2-1): 022901, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934263

RESUMO

We study the size-density and size-topology relations in random packings of dry adhesive polydisperse microspheres with Gaussian and lognormal size distributions through a geometric tessellation. We find that the dependence of the neighbor number on the centric particle size is always quasilinear, regardless of the size distribution, size span, or interparticle adhesion. The average local packing fraction as a function of normalized particle size for different size variances is well regressed on the same profile, which increases to larger values as the relative strength of adhesion decreases. The variations of the local coordination number with the particle size converge onto a single curve for all adhesive particles, but gradually transfer to another branch for nonadhesive particles. Such adhesion-induced size-density and size-topology relations are interpreted theoretically with a modified geometrical "granocentric" model, where the model parameters are dependent on a single dimensionless adhesion number. Our findings, together with the modified theory, provide a more unified perspective on the substantial geometry of amorphous polydisperse systems, especially those with fairly loose structures.

13.
Sensors (Basel) ; 18(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044437

RESUMO

In order to improve the keyway broaching process and verify the feasibility of vibration-assisted broaching process, an experimental study on a novel hydraulic vibration assisted broaching (HVAB) system with double-valve electro-hydraulic exciter (DVEHE) is proposed in this paper. The performances of HVAB at different excitation frequencies were compared from three aspects: (a) the cutting force under the different vibration frequencies, (b) the surface roughness of the workpiece, and (c) the flank face wear of the tool. For precision on-line measurement of larger broaching forces, four piezoelectric sensors were fixed on the broaching machine. The experimental results show that HVAB can effectively improve the performance of the broaching process, approximately reduce the broaching force by as much as 9.7% compared to conventional broaching (CB) and improve the surface quality of workpiece. Some explanations are offered to support the observations.

14.
Biomater Sci ; 6(3): 596-603, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406548

RESUMO

Lyotropic liquid crystals (LLC) have received increasing attention as a drug delivery system. In this study, a novel intra-canal disinfectant based on the glycerol monooleate (GMO) LLC precursor incorporation with chlorhexidine (CHX) and silver nanoparticles (Ag-NPs) was designed and evaluated. The LLC precursor with excellent fluidity was able to penetrate deeply into the complex tiny collateral branch root canals. The transformation of cubic LLC in root canals upon coming into contact with water provided long-lasting disinfection against multidrug-resistant bacteria to avoid the endodontic reinfection and follow-up visits. The GMO-ethanol-water (48% : 12% : 40%, w/w) formulation containing 0.5% CHX and 0.02% Ag-NPs was selected for further studies. The low viscosity of the precursor presented excellent injectability and flowabilities. From the in vitro release test, the release behaviours were found to be influenced by CHX and Ag-NP contents, allowing the optimized precursor to obtain a 28-day release profile. The CHX-Ag-NP containing LLC precursor exhibited an excellent and sustained sterilization effect on Enterococcus faecalis for more than one month with a bacterial inactivation rate of ≥98.5%, which was far more than the minimum clinical requirement (7 days). Furthermore, no in vitro toxicity was observed in the cytotoxicity evaluation. The CHX-Ag-NP containing LLC precursor was proved to be a promising intra-canal disinfectant in our study.


Assuntos
Cristais Líquidos/química , Nanopartículas Metálicas/química , Tratamento do Canal Radicular/métodos , Antibacterianos/química , Antibacterianos/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Liberação Controlada de Fármacos , Enterococcus faecalis/efeitos dos fármacos , Glicerídeos/química , Prata/química , Viscosidade
15.
Int J Nanomedicine ; 12: 8801-8811, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263669

RESUMO

Solid self-emulsifying drug delivery system (SSEDDS), which incorporates liquid SEDDS into a solid dosage form, has been recently introduced to improve the oral bioavail-ability of poorly water-soluble drugs. However, supersaturated drug generated by SSEDDS is thermodynamically unstable and tends to precipitate rapidly prior to absorption, resulting in compromised bioavailability. The aim of this study was to construct a novel supersaturated SSEDDS (super-SSEDDS) by combining SSEDDS with appropriate precipitation inhibitor. Fenofibrate (FNB), a sparingly soluble drug, was selected as a model drug in this study. An optimized SSEDDS was prepared by solvent evaporation by using mesoporous silica Santa Barbara Amorphous-15 as the inert carrier. Supersaturation assay was conducted to evaluate the precipitation inhibition capacity of different polymers, and the results showed that Soluplus® could retard the FNB precipitation more effectively and sustain a higher apparent concentration for ~120 min. This effect was also clearly observed in the dissolution profiles of FNB from SSEDDS under supersaturated condition. The study of the mechanism suggested that the inhibition effect might be achieved both thermodynamically and kinetically. The area under the concentration-time curve of the super-SSEDDS was 1.4-fold greater than that of SSEDDS in the absence of Soluplus, based on an in vivo pharmacokinetic study conducted in beagle dogs. This study has demonstrated that the approach of combining SSEDDS with Soluplus as a supersaturation stabilizer constitutes a potential tool to improve the absorption of poorly water-soluble drugs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fenofibrato/administração & dosagem , Animais , Disponibilidade Biológica , Células CACO-2 , Cães , Emulsões , Fenofibrato/farmacocinética , Humanos , Polietilenoglicóis/química , Polímeros/química , Polivinil/química , Dióxido de Silício/química , Solubilidade
16.
Int J Pharm ; 534(1-2): 119-127, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29030289

RESUMO

Thermal properties of powders are critical material attributes that control temperature rise during tableting and roll compaction. In this study, various analytical methods were used to measure the thermal properties of widely used pharmaceutical excipients including microcrystalline cellulose (MCC) of three different grades (Avicel PH 101; Avicel PH 102 and Avicel DG), lactose and mannitol. The effect of relative density on the measured thermal properties was investigated by compressing the powders into specimen of different relative densities. Differential thermal analysis (DTA) was employed to explore endothermic or exothermic events in the temperature range endured during typical pharmaceutical manufacturing processes, such as tabletting and roll compaction. Thermogravimetric analysis (TGA) was performed to analyse the water/solvent content, either in the form as solvates or as loosely bound molecules on the particle surface. Thermal conductivity analysis (TCA) was conducted to measure thermal conductivity and volumetric heat capacity. It is shown that, for the MCC powders, almost no changes in morphology or structural changes were observed during heating to temperatures up to 200°C. An increase in relative density or temperature leads to a high thermal conductivity and the volumetric heat capacity. Among all MCC powders considered, Avicel DG showed the highest increase in thermal conductivity and the volumetric heat capacity, but this heat capacity was not sensitive to the measurement temperature. For lactose and mannitol, some endothermic events occurred during heating. The thermal conductivity increased with the increase in temperature and relative density. A model was also developed to describe the variation of the thermal conductivity and the volumetric heat capacity with the relative density and the temperature. It was shown that the empirical model can well predict the dependency of the thermal conductivity and the volumetric heat capacity on the relative density and the temperature.


Assuntos
Excipientes/química , Celulose/química , Análise Diferencial Térmica/métodos , Lactose/química , Manitol/química , Pós/química , Solventes/química , Comprimidos/química , Temperatura , Termogravimetria/métodos , Água/química
17.
Materials (Basel) ; 10(6)2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28772952

RESUMO

The flowability and dispersion behavior are two important physicochemical properties of pharmaceutical formulations for dry powder inhalers (DPIs). They are usually affected by the environmental conditions, such as temperature and relative humidity (RH). However, very few studies have been focused on the relationship between the two properties and their dependence on RH during storage. In this research, model pharmaceutical formulations were prepared using mixtures of coarse and fine lactose. The fractions of fines in the mixtures were 0%, 5%, 10%, and 20%, respectively. These blends were stored at four different RH levels, 0%, 30%, 58%, and 85%, for 48 h. The FT4 Powder Rheometer was used to evaluate the powder flowability, and the Malvern Spraytec® laser diffraction system was employed to assess the powder dispersion performance. The results indicated that both the flow and dispersion properties of lactose blends deteriorate after being stored at 85% RH, but improved after being conditioned at 58% RH. The fine particle fractions (FPFs) of the blends with 5% and 10% fine fractions and the as-received coarse lactose decreased when they were conditioned at 30% RH. For the blend with 20% fine fraction, a high RH during storage (i.e., 85% RH) affected the dispersion property, but had a limited influence on its flowability, while, for the coarse lactose powder, the different RH conditions affected its flowability, but not the dispersion results. A strong correlation between the powder flowability and its dispersion performance was found.

18.
Materials (Basel) ; 10(7)2017 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-28773204

RESUMO

As one of the commonly-used solid dosage forms, pharmaceutical tablets have been widely used to deliver active drugs into the human body, satisfying patient's therapeutic requirements. To manufacture tablets of good quality, diluent powders are generally used in formulation development to increase the bulk of formulations and to bind other inactive ingredients with the active pharmaceutical ingredients (APIs). For formulations of a low API dose, the drug products generally consist of a large fraction of diluent powders. Hence, the attributes of diluents become extremely important and can significantly influence the final product property. Therefore, it is essential to accurately characterise the mechanical properties of the diluents and to thoroughly understand how their mechanical properties affect the manufacturing performance and properties of the final products, which will build a sound scientific basis for formulation design and product development. In this study, a comprehensive evaluation of the mechanical properties of the widely-used pharmaceutical diluent powders, including microcrystalline cellulose (MCC) powders with different grades (i.e., Avicel PH 101, Avicel PH 102, and DG), mannitol SD 100, lactose monohydrate, and dibasic calcium phosphate, were performed. The powder compressibility was assessed with Heckel and Kawakita analyses. The material elastic recovery during decompression and in storage was investigated through monitoring the change in the dimensions of the compressed tablets over time. The powder hygroscopicity was also evaluated to examine the water absorption ability of powders from the surroundings. It was shown that the MCC tablets exhibited continuous volume expansion after ejection, which is believed to be induced by (1) water absorption from the surrounding, and (2) elastic recovery. However, mannitol tablets showed volume expansion immediately after ejection, followed by the material shrinkage in storage. It is anticipated that the expansion was induced by elastic recovery to a limited extent, while the shrinkage was primarily due to the solidification during storage. It was also found that, for all powders considered, the powder compressibility and the elastic recovery depended significantly on the particle breakage tendency: a decrease in the particle breakage tendency led to a slight decrease in the powder compressibility and a significant drop in immediate elastic recovery. This implies that the particle breakage tendency is a critical material attribute in controlling the compression behaviour of pharmaceutical powders.

19.
Sci Rep ; 7: 46517, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28462948

RESUMO

An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance.


Assuntos
Budesonida , Portadores de Fármacos , Manitol , Animais , Budesonida/química , Budesonida/farmacocinética , Budesonida/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Masculino , Manitol/química , Manitol/farmacocinética , Manitol/farmacologia , Nanopartículas/química , Tamanho da Partícula , Porosidade , Ratos , Ratos Sprague-Dawley , Solventes/química
20.
AAPS PharmSciTech ; 18(8): 2919-2926, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28429294

RESUMO

Glaucoma is an ocular disease featuring increased intraocular pressure (IOP) and its primary treatment strategy is to lower IOP by medication. Current ocular drug delivery in treating glaucoma is confronting a variety of challenges, such as low corneal permeability and bioavailability due to the unique anatomical structure of the human eye. To tackle these challenges, a cubosome drug delivery system for glaucoma treatment was constructed for timolol maleate (TM) in this study. The TM cubosomes (liquid crystalline nanoparticles) were prepared using glycerol monooleate and poloxamer 407 via high-pressure homogenization. These constructed nanoparticles appeared spherical using transmission electron microscopy and had an average particle size of 142 nm, zeta potential of -6.27 mV, and over 85% encapsulation efficiency. Moreover, using polarized light microscopy and small-angle X-ray scattering (SAXS), it was shown that the TM cubosomes have cubic liquid crystalline D-type (Pn3m) structure, which provides good physicochemical stability and high encapsulation efficiency. Ex vivo corneal permeability experiments showed that the total amount of TM cubosomes penetrated was higher than the commercially available eye drops. In addition, in vivo studies revealed that TM cubosomes reduced the IOP in rabbits from 27.8∼39.7 to 21.4∼32.6 mmHg after 1-week administration and had a longer retention time and better lower-IOP effect than the commercial TM eye drops. Furthermore, neither cytotoxicity nor histological impairment in the rabbit corneas was observed. This study suggests that cubosomes are capable of increasing the corneal permeability and bioavailability of TM and have great potential for ocular disease treatment.


Assuntos
Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Timolol/administração & dosagem , Timolol/síntese química , Administração Oftálmica , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/síntese química , Animais , Córnea/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/síntese química , Soluções Oftálmicas/toxicidade , Tamanho da Partícula , Coelhos , Espalhamento a Baixo Ângulo , Timolol/toxicidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...