Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
J Mater Chem B ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757190

RESUMO

Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.

2.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580030

RESUMO

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Assuntos
Antibacterianos , Doxiciclina , Nanopartículas , Agulhas , Polilisina , Polilisina/química , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Doxiciclina/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542235

RESUMO

Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.


Assuntos
Biomineralização , Lipossomos , Humanos , Inaladores Dosimetrados , Administração por Inalação
4.
J Cell Mol Med ; 28(8): e18244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520211

RESUMO

To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1ß treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1ß in SFs, while overexpression of TRIM52 enhanced IL-1ß induction. Meanwhile, IL-1ß induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1ß-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1ß-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1ß-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Animais , Humanos , Ratos , Proliferação de Células , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Estresse Oxidativo , Articulação Temporomandibular/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399222

RESUMO

With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.

6.
Pharmaceutics ; 16(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399340

RESUMO

Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field.

7.
J Control Release ; 367: 184-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242212

RESUMO

The microneedle (MN) delivery system presents an attractive administration route for patients with Alzheimer's disease (AD). However, the passive drug delivery mode and low drug loading of MNs often result in unsatisfactory therapeutic efficiency. To address these dilemmas, we developed dual engine-drive bionic MNs for robust AD treatment. Specifically, free rivastigmine (RVT) and RVT particles were co-loaded within the MNs to construct the valve and chambers of the guava, respectively, which can serve as an active engine to promote drug permeation by generating capillary force. K2CO3 and citric acid were introduced as a pneumatic engine into the MNs to promote the permeation of free RVT into deeper skin layers for early intervention in AD. Further, the RVT particles served as a drug depot to provide continuous drug release for prolonged AD treatment. Compared with free RVT-loaded MNs, the dual engine-driven bionic MNs showed an increase in drug loading, cumulative transdermal permeability, and normalized bioavailability of approximately 40%, 22%, and 49%, respectively. Pharmacodynamic studies further confirmed that the dual engine-driven bionic MNs were most effective in restoring memory and recognition functions in mice with short-term memory dysfunction. Therefore, the dual engine-driven bionic MNs hold great promise for highly efficient AD treatment.


Assuntos
Doença de Alzheimer , Biônica , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Pele , Administração Cutânea , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Agulhas
8.
J Control Release ; 367: 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244844

RESUMO

Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.


Assuntos
Adenosina , Neoplasias , Animais , Camundongos , Fototerapia/métodos , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Imunoterapia , Linhagem Celular Tumoral
9.
Nanoscale ; 16(6): 2820-2833, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38289362

RESUMO

Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.


Assuntos
Neoplasias Pulmonares , Nanomedicina , Humanos , Sistemas de Liberação de Medicamentos , Pulmão , Neoplasias Pulmonares/terapia , Microambiente Tumoral
10.
Int J Pharm ; 652: 123809, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224760

RESUMO

Alzheimer's disease (AD) is characterized by a gradual decline in cognitive function and memory impairment, significantly impacting the daily lives of patients. Rivastigmine (RHT), a cholinesterase inhibitor, is used to treat mild to moderate AD via oral administration. However, oral administration is associated with slow absorption rate and severe systemic side effects. RHT nasal spray (RHT-ns), as a nose-to-brain delivery system, is more promising for AD management due to its efficient brain delivery and reduced peripheral exposure. This study constructed RHT-ns for enhancing AD treatment efficacy, and meanwhile the correlation between drug olfactory deposition and drug entering into the brain was explored. A 3D-printed nasal cast was employed to quantify the drug olfactory deposition. Brain delivery of RHT-ns was quantified using fluorescence tracking and Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) analysis, which showed a good correlation to the olfactory deposition. F2 (containing 1% (w/v) viscosity modifier Avicel® RC-591) with high olfactory deposition and drug brain delivery was further investigated for pharmacodynamics study. F2 exhibited superiority in AD treatment over the commercially available oral formulation. In summary, the present study showed the successful development of RHT-ns with improved olfactory deposition and enhanced brain delivery. It might provide new insight into the design and development of nose-to-brain systems for the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Rivastigmina/química , Rivastigmina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Sprays Nasais , Administração Intranasal , Encéfalo , Inibidores da Colinesterase
11.
J Control Release ; 365: 274-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979695

RESUMO

In this study, a dosage form consisting of dissolving (D) microneedles (M) and an adhesive (A) transdermal patch (P; DMAP) was designed and pre-clinically evaluated for the treatment of rheumatoid arthritis (RA). The tip of the dissolving microneedles (DMNs) was loaded with the macromolecular drug melittin (Mel@DMNs), this to treat joint inflammation and bone damage, while the adhesive transdermal patches contained the low molecular weight drug diclofenac sodium (DS; DS@AP) for pain relief. Mel@DMNs and DS@AP were ingeniously connected through an isolation layer for compounding Mel-DS@DMAP for the simultaneous delivery of the drugs. In vitro and in vivo experiments showed that DS@AP did not affect the mechanical properties and dissolution process of Mel@DMNs while the pores formed by the microneedles promoted the skin penetration of DS. Treatment of rats suffering from RA with Mel-DS@DMAP reduced paw swelling and damage of the synovium, joint and cartilage, suggesting that the 'patch-microneedle' dosage form might be promising for the treatment and management of RA.


Assuntos
Artrite Reumatoide , Sistemas de Liberação de Medicamentos , Ratos , Animais , Administração Cutânea , Preparações Farmacêuticas , Adesivo Transdérmico , Pele , Artrite Reumatoide/tratamento farmacológico , Agulhas
12.
Int J Pharm ; 650: 123718, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104849

RESUMO

The emergence of multidrug resistance (MDR) is the leading cause of mortality in patients with breast cancer. Overexpressed P-glycoprotein (P-gp) that can pump out chemotherapeutics from multidrug-resistant cancer cells is the main cause of chemotherapy failure. P-gp inhibitors are hence increasingly used to sensitize chemotherapy to breast cancer with MDR by reducing the efflux of drugs. However, representative P-gp inhibitors usually have severe side effects and the effect of their release behavior on chemotherapy are neglected in current studies. We constructed a nano-in-thermogel delivery system with the sequential release of ginsenoside Rh2 (GRh2) and a chemotherapeutic drug in the tumor microenvironment as a drug compounding "reservoir" to combat MDR in breast cancer. Briefly, paclitaxel (PTX) and GRh2 were encapsulated in solid lipid nanoparticles (SLNs) and dispersed in a poloxamer-based thermogel (SLNs-Gel). GRh2 was used as an innovative and safe P-gp inhibitor to lower P-gp expression and cellular adenosine triphosphate context, thereby sensitizing PTX-resistant breast cancer cells (MCF-7/PTX) to PTX. Pharmacodynamic and in vivo safety studies confirmed that intratumoral injection of SLNs-Gel significantly suppressed the proliferation of PTX-resistant breast cancer and alleviated the PTX-induced hematotoxicity. The GRh2-irrigated nano-in-thermogel delivery system shows great potential in combating multidrug-resistant cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/patologia , Resistência a Múltiplos Medicamentos , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Paclitaxel , Linhagem Celular Tumoral , Células MCF-7 , Microambiente Tumoral
13.
J Nanobiotechnology ; 21(1): 473, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066528

RESUMO

BACKGROUND: Gene therapy for lung cancer has emerged as a novel tumor-combating strategy for its superior tumor specificity, low systematical toxicity and huge clinical translation potential. Especially, the applications of microRNA shed led on effective tumor ablation by directly interfering with the crucial gene expression, making it one of the most promising gene therapy agents. However, for lung cancer therapy, the microRNA treatment confronted three bottlenecks, the poor tumor tissue penetration effect, the insufficient lung drug accumulation and unsatisfied gene transfection efficiency. To address these issues, an inhalable RGD-TAT dual peptides-modified cationic liposomes loaded with microRNA miR-34a and gap junction (GJ) regulation agent all-trans retinoic acid (ATRA) was proposed, which was further engineered into dry powder inhalers (DPIs). RESULTS: Equipped with a rough particle surface and appropriate aerodynamic size, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs were expected to deposit into the deep lung and reach lung tumor lesions guided by targeting peptide RGD. Assisted by cellular transmembrane peptides TAT, the RGD-TAT-CLPs/ARTA@miR-34a was proven to be effectively internalized by cancer cells, enhancing gene transfection efficiency. Then, the GJ between tumor cells was upregulated by ARTA, facilitating the intercellular transport of miR-34a and boosting the gene expression in the deep tumor. CONCLUSION: Overall, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could enhance tumor tissue penetration, elevate lung drug accumulation and boost gene transfection efficiency, breaking the three bottlenecks to enhancing tumor elimination in vitro and in vivo. We believe that the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could serve as a promising pulmonary gene delivery platform for multiple lung local disease treatments.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Lipossomos , Neoplasias Pulmonares/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/metabolismo , Oligopeptídeos , Junções Comunicantes/metabolismo , Genes Neoplásicos , Linhagem Celular Tumoral
14.
Clin Oral Investig ; 28(1): 23, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147178

RESUMO

OBJECTIVES: To explore the knowledge, attitudes, and practice (KAP) of non-medical students regarding impacted teeth and the factors associated with KAP. MATERIALS AND METHODS: This cross-sectional study enrolled non-medical students at two universities (Northeastern University and Shenyang Conservatory of Music) in northeastern China between December 2022 and February 2023. Scores > 70% were defined as adequate knowledge, positive attitudes, and proactive practice. RESULTS: A total of 519 non-medical students participated in this study. Most participants were male (54.72%), ≤ 20 years of age (72.83%), and freshmen (36.03%). The mean knowledge score was 4.98 ± 3.46 (possible range: 0-10), indicating poor knowledge (49.80%). The multivariable analysis showed that having impacted teeth were independently associated with adequate knowledge (OR = 3.114, 95% CI: 1.589-6.103, P = 0.001). The mean attitude score was 24.65 ± 3.78 (possible range: 7-35), indicating favorable attitudes (70.43%). The knowledge (OR = 1.182, 95% CI: 1.116-1.251, P < 0.001), junior grade (OR = 0.541, 95% CI: 0.327-0.895, P = 0.017), senior grade and above (OR = 0.477, 95% CI: 0.274-0.829, P = 0.009), and a history of impacted tooth extraction (OR = 2.386, 95% CI: 1.048-5.436, P = 0.038) were independently associated with the good attitudes. The mean practice score was 21.45 ± 5.64 (possible range: 6-30), indicating positive practice (71.50%). The knowledge (OR = 1.074, 95% CI: 1.017-1.133, P = 0.010) and female (OR = 1.501, 95% CI: 1.052-2.141, P = 0.025) were independently associated with the proactive practices. CONCLUSIONS: Non-medical students had poor knowledge but favorable attitudes and good practice toward impacted teeth. Non-medical students require additional education and awareness about the importance of early detection and management of impacted teeth. CLINICAL RELEVANCE: The study highlights the need for improved education and awareness among non-medical students regarding impacted teeth.


Assuntos
Dente Impactado , Humanos , Feminino , Masculino , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Escolaridade , Estudantes
15.
Sci Bull (Beijing) ; 68(24): 3225-3239, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37973467

RESUMO

Pulmonary infections caused by multidrug-resistant bacteria have become a significant threat to human health. Bacterial biofilms exacerbate the persistence and recurrence of pulmonary infections, hindering the accessibility and effectiveness of antibiotics. In this study, a dry powder inhalation (DPI) consisting of polymyxin B sulfate (PMBS) inhalable microparticles and high-lectin-affinity (HLA) sugar (i.e., raffinose) carriers was developed for treating pulmonary infections and targeting bacterial lectins essential for biofilm growth. The formulated PMBS-HLA DPIs exhibited particle sizes of approximately 3 µm, and surface roughness varied according to the drug-to-carrier ratio. Formulation F5 (PMBS: raffinose = 10:90) demonstrated the highest fine particle fraction (FPF) value (64.86%), signifying its substantially enhanced aerosol performance, potentially attributable to moderate roughness and smallest mass median aerodynamic particle size. The efficacy of PMBS-HLA DPIs in inhibiting biofilm formation and eradicating mature biofilms was significantly improved with the addition of raffinose, suggesting the effectiveness of lectin-binding strategy for combating bacterial biofilm-associated infections. In rat models with acute and chronic pulmonary infections, F5 demonstrated superior bacterial killing and amelioration of inflammatory responses compared to spray-dried PMBS (F0). In conclusion, our HLA carrier-based formulation presents considerable potential for the efficient treatment of multidrug-resistant bacterial biofilm-associated pulmonary infections.


Assuntos
Polimixina B , Açúcares , Ratos , Humanos , Animais , Polimixina B/farmacologia , Rafinose , Carboidratos , Portadores de Fármacos , Biofilmes , Lectinas
16.
ACS Appl Mater Interfaces ; 15(40): 46613-46625, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782836

RESUMO

Psoriasis and diabetes are both common comorbidities for each other, where inflammation and insulin resistance act in a vicious cycle, driving the progression of disease through the activation of the NF-κB signaling pathway. Therefore, disrupting the linkage between inflammation and insulin resistance by inhibiting the NF-κB pathway presents a promising therapeutic strategy for addressing psoriasis-diabetic comorbidity. Herein, an open-loop therapy was developed by integrating microneedle-mediated short- and long-range missiles to target psoriasis and diabetes, respectively. The short-range missile (curcumin nanoparticle) could be stationed in the psoriatic skin for topical and prolonged antipsoriasis therapy, while the long-range missile (metformin) is capable of penetrating transdermal barriers to induce a systemic hypoglycemic effect. More attractively, the short- and long-range missiles could join hands to inhibit the NF-κB signaling pathway and diminish inflammation, effectively disrupting the crosstalk between inflammation and insulin resistance. Pharmacodynamic studies showed that this microneedle-mediated combination, possessing dual anti-inflammatory and antihyperglycemic properties, proves to be highly efficacious in alleviating typical symptoms and inflammatory response in both nondiabetic and diabetic mice with imiquimod (IMQ)-induced psoriasis models. Hence, the microneedle-mediated open-loop therapy shows great potential in the management of psoriasis-diabetes comorbidity.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Psoríase , Animais , Camundongos , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele , Inflamação/metabolismo , Comorbidade , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
17.
Biochem Pharmacol ; 217: 115843, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797722

RESUMO

CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.


Assuntos
Ritmo Circadiano , Criptocromos , Fatores de Transcrição , Animais , Camundongos , Ritmo Circadiano/genética , Fígado , Luciferases , RNA Mensageiro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo
18.
Gels ; 9(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754419

RESUMO

Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.

19.
Int J Pharm ; 646: 123442, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37774758

RESUMO

The diabetic wound is a prevalent and serious complication of diabetes, which easily deteriorates due to susceptibility to infection and difficulty in healing, causing a high risk of amputation and economic burden to patients. Bacterial infection, persistent excessive inflammation, and cellular and angiogenesis disorders are the main reasons for the difficulty of diabetic wound healing. In this study, glycerol monooleate (GMO) was used to prepare lyotropic liquid crystal hydrogel (LLC) containing the natural antimicrobial peptide LL37 and carbenoxolone (CBX) to achieve antibacterial, anti-inflammation, and healing promotion for the treatment of diabetic wounds. The shear-thinning properties of the LLC precursor solution allowed it to be administered in the form of a spray, which perfectly fitted the shape of the wound and transformed into a gel after absorbing wound exudate to act as a wound protective barrier. The faster release of LL37 realized rapid sterilization of wounds, controlled the source of inflammation, and accelerated wound healing. The inflammatory signaling pathway was blocked by the subsequently released CBX, and the spread of the inflammatory response was inhibited and then further weakened. In addition, CBX down-regulated connexin (Cx43) to assist LL37 to promote cell migration and proliferation better. Combined with the pro-angiogenic effect of LL37, the healing of diabetic wounds was significantly accelerated. All these advantages made LL37-CBX-LLC a promising approach for the treatment of chronic diabetic wounds.

20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(3): 328-337, 2023 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37476944

RESUMO

Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Administração Intranasal , Preparações Farmacêuticas , Encéfalo , Cavidade Nasal/fisiologia , Mucosa Nasal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...